Skip to main content
Log in

Deformation of silicon at low temperatures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dislocation arrangements produced around microhardness indentations made in silicon at room temperature have been studied by transmission electron microscopy. Loops consisting of 30°- and 60°-dislocations are produced and move on the {111} planes. It is suggested that, during indentation, the theoretical shear strength is exceeded locally and that the observed dislocations arise as a result of the accommodation of the displacements due to block slip. On annealing up to 1030° C the loops do not appear to be mobile, rather new loops consisting of edge and screw components are formed which can move large distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stickler and G. R. Booker, Phil. Mag. 8 (1963) 859.

    Google Scholar 

  2. E. N. Pugh and L. E. Samuels, J. Electrochem. Soc. 108 (1961) 1043.

    Google Scholar 

  3. T. M. Buck and R. L. Meek, in “Silicon Device Processing”, N.B.S. Special Publication 337, Washington, November 1970, p. 419.

  4. R. P. Walson and H. K. Birnbaum, Phys. Stat. Sol. (a) 6 (1971) K 1.

    Google Scholar 

  5. V. I. Nikitenko, M. M. Myshlyaev and V. G. Eremenko, Sov. Phys. — Solid State 9 (1968) 2047.

    Google Scholar 

  6. K. G. Carroll and A. Tanaka, Trans. Met. Soc. AIME 242 (1968) 338.

    Google Scholar 

  7. D. J. Rowcliffe and G. E. Hollox, J. Mater. Sci. 6 (1971) 1261.

    Google Scholar 

  8. V. G. Eremenko and V. I. Nikitenko, Phys. Stat. Sol. (a) 14 (1972) 317.

    Google Scholar 

  9. I. V. Gridneva, Yu. V. Milman and V. I. Trefilov, ibid 14 (1972) 177.

    Google Scholar 

  10. M. J. Hill and A. Frey, to be published.

  11. M. F. Ashby, in “Strengthening Methods in Crystals”, (edited by A. Kelly and R. B. Nicholson) (Elsevier, Amsterdam, 1971) p. 137.

    Google Scholar 

  12. S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids 23 (1962) 451.

    Google Scholar 

  13. R. A. Graham, O. E. Jones and J. R. Holland, J. Appl. Phys. 36 (1965) 3955.

    Google Scholar 

  14. J. Hornstra, J. Phys. Chem. Solids 5 (1958) 129.

    Google Scholar 

  15. H. Alexander and P. Haasen, in “Solid State Physics”, (edited by F. Seitz and D. Turnbull) (Academic Press, New York, 1968) Vol. 22 p. 27.

    Google Scholar 

  16. J. J. Gilman, in “Mechanical Behaviour of Materials under Dynamic Loads”, (edited by U. S. Lindholm) (Springer Verlag, New York, 1968) p. 152; J. Appl. Phys. 39 (1968) 6086.

    Google Scholar 

  17. A. R. Chaudhuri, J. R. Patel and L. G. Rubin, J. Appl. Phys. 33 (1962) 2736.

    Google Scholar 

  18. M. N. Kabler, Phys. Rev. 131 (1963) 54.

    Google Scholar 

  19. A. H. Cottrell, in “Dislocations and Plastic Flow in Crystals” (Oxford University Press, London, 1953) p. 53.

    Google Scholar 

  20. D. M. Marsh, Proc. Roy. Soc. A 279 (1964) 420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, M.J., Rowcliffe, D.J. Deformation of silicon at low temperatures. J Mater Sci 9, 1569–1576 (1974). https://doi.org/10.1007/BF00540753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540753

Keywords

Navigation