Skip to main content
Log in

Some aspects of the structural organization of the arthropod ganglia

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

This paper deals with the fine structure of the abdominal ganglia of several species of arthropods belonging to the classes Arachnida, Crustacea, Myriapoda and Insecta. The tissues were fixed in osmium tetroxide and embedded in n-butyl methacrylate or fixed in potasium permanganate and embedded in a mixture of X 133/2097 and Araldite.

A comparative study was made in order to discriminate between those structural characteristics of the nervous system appearing only in determined taxonomic groups and those belonging to a fundamental plan common to the whole Phylum. This work covers the morphology of neurons, glial cells, neuropilic nerve fibers and neuronal connections.

Most arthropod neurons are pear-shaped with only one prolongation and the nucleus is located in the center of the soma, enveloped by two membranes showing numerous “pores”. Cisternae of the ER have frequently been observed in continuity with this nuclear envelope. After osmic fixation the nuclear content appears to consist of small dense granules distributed at random in the nucleoplasm. In addition to these small perticles there are, in some species, large chromatin blocks. The use of Permanganate as fixative introduces important changes in the nuclear aspect; most of the nuclei look washed and the nuclear content acquires an homogeneous appearance.

The cytoplasm of the neurons contains a complex system of internal membranes consisting of cisternae and tubuli of the ER system, lamellae of the Golgi complex and invaginations of the plasma membrane. In most species the elements of the ER system are distributed at random in the cytoplasm but in the neurons of Bothriurus bonariensis there are parallel aggregations of membranes similar to the Nissl bodies found in vertebrates.

It was found in some of the species studied (Armadillidium vulgare and Lithobius Sp.) that the internal membrane system of the nerve cells is mainly represented by Golgi elements while the ER system seems to be poorly developed.

Besides the membranous components, the neuronal cytoplasm contains mitochondria, multivesicular bodies and dense granules of neurosecretory material.

Neuroglial cells are mainly characterized by their nuclear structure. After the action of osmium tetroxide, glial nuclei show irregular masses of chromatin inmersed in a nucleoplasm of low electron density. In permanganate fixed material these chromatin blocks appear as blank spaces.

In the cytoplasm of these cells there are mitochondria, membranes pertaining to the ER system and elements of the Golgi complex but in some of the species studied gliofibrils and granules of pigment were found.

Three main types of neuroglial cells have been recognized in an arthropod ganglia. These are: subcapsular glial cells, neuron satellites and nerve fiber satellites.

The neuropile occupies the central region of the ganglion and consists of a great number of nerve fibers intermingled with glial processes. The neuropilic n. fibers consistently show profiles of ER membranes and tubuli pertaining to the ER system. In some of these fibers the ER reaches a high degree of development. In Armadillidium there is a special type of n. fiber containing a regular sequence of transversally oriented cisternae. Arthropod fibers sometimes contain thin parallel filaments as well as typical ER elements.

Mitochondria, small vesicles and dense granules are commonly found within the neuroplasm of the neuropilic fibers. It is important to note that in arthropods, microvesicles are not restricted to the terminal region of the nerve fibers but that they may also occur all along the fibers.

Arthropod neurons are enveloped by a glial insulating capsule and therefore interneuron contacts may only occur at neuropile level. These contacts are of three different morphological types: cross contacts, longitudinal contacts and end-knob contacts. At the level of longitudinal and cross contacts the neuroplasm shows no increase in the number of microvesicles or mitochondria. In the end-knob contacts, on the contrary, large numbers of microvesicles appear concentrated in the pre-synaptic fiber only, and occasionally in both fibers the pre-synaptic and the post-synaptic.

It is maintained that funcional interneuron connections may result not only from contacts between fibers containing vesicles, but also between fibers in which vesicles are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Anderson, E., and V. L. van Breemen: Electron microscopic observations on spinal ganglion cells of Rana pipiens after injection of Malononitrile. J. biophys. biochem. Cytol. 4, 83–86 (1958).

    Google Scholar 

  • Bargmann, W.: Die endokrine Tätigkeit des Zwischenhirns. Pathophysiologia Diencephalica. Internat. Symposion. Mailand, Mai 1956, p. 21–30. Wien: Springer 1958.

    Google Scholar 

  • —, und A. Knoop: Elektronenmikroskopische Beobachtungen an der Neurohypophyse. Z. Zellforsch. 46, 242–251 (1957).

    Google Scholar 

  • — —: Über die morphologischen Beziehungen des neurosekretorischen Zwischenhirnsystems zum Zwischenlappen der Hypophyse (Licht- und elektronenmikroskopische Untersuchungen). Z. Zellforsch. 52, 256–277 (1960).

    Google Scholar 

  • Beccari, N.: El problema del Neurone. Firenze: Tipocalcografía classica 1947.

    Google Scholar 

  • Cajal, S. R., y D. Sanchez: Contribución al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. biol. Univ. Madrid 13, 1–161 (1915).

    Google Scholar 

  • Callan, H. G., and S. F. Tomlin: Experimental studies on amphibian oocytes nuclei. I. Investigación on the structure of the nuclear membrane by means of the electron microscope. Proc. roy. Soc. B 137, 367–378 (1950).

    Google Scholar 

  • De Robertis, E.: Submicroscopic morphology of the synapse. Int. Rev. Cytol. 8, 61–96 (1959).

    Google Scholar 

  • Eccles, J. C.: Physiology of nerve vells. Baltimore: John Hopkins Press 1957.

    Google Scholar 

  • Edwards, G. A.: The fine structure of a multiterminal innervation of an insect muscle. J. biophys. biochem. Cytol. 5, 241–244 (1959).

    Google Scholar 

  • —: Insect micromorphology. Ann. Rev. Entomol. 5, 17–34 (1960).

    Google Scholar 

  • —, H. Ruska and de Harven: Neuromuscular junctions in flight and tymbal muscles of the Cicada. J. biophys. biochem. Cytol. 4, 251–256 (1958).

    Google Scholar 

  • Estable, C.: Estructura del nucleolo y algunas experiencias tendientes a demostrar su significación biológica. Congreso Médico del Centenario, Montevideo (Uruguay) 9, 558–566 (1930).

    Google Scholar 

  • —: Considerations on the histological bases of neurophysiology. Brain mechanisms and learning, p. 309–334. A symposium. Oxford: Blackwell 1961.

    Google Scholar 

  • —, W. Acosta and J. R. Sotelo: An electron microscope study of the regenerating nerve fibers. Z. Zellforsch. 46, 387–399 (1957).

    Google Scholar 

  • —, y J. R. Sotelo: Una nueva estructura celular: el nucleolonema. Publ. Inst. Invest. Ciencias Biol. 1, 105–125 (1951).

    Google Scholar 

  • Fingermann, M., and T. Aoto: The neurosecretory system of the dwarf cray fish Cambarellus shufeldti revealed by electron and light microscopy. Trans. Amer. Microscop. Soc. 78, 305–317 (1959).

    Google Scholar 

  • Furshpan, E. J., and D. D. Potter: Mechanism of nerve-impulse transmission at a crayfish synapse. Nature (Lond.) 180, 342 (1957).

    Google Scholar 

  • Glauert, A., and R. H. Glauert: Araldite as an embedding medium for electron microscopy. J. biophys. biochem. Cytol. 4, 191–194 (1958).

    Google Scholar 

  • Gray, E. G.: The fine structure of the insect ear. Phil. Trans. B. 243, 75–94 (1960).

    Google Scholar 

  • Green, J., and L. van Breemen: Electron microscopy of the pituitary and observations on neurosecretion. Amer. J. Anat. 97, 177–228 (1955).

    Google Scholar 

  • Hess, A.: The fine structure of nerve cells and fibers. Neuroglia and sheaths of the ganglion, chain in the cockroach (Periplaneta americana). J. biophys. biochem. Cytol. 4, 251–356 (1958).

    Google Scholar 

  • Hodge, M. H., and G. B. Chapman: Some observations on the fine structure of the sinus gland of a land crab — Geocarcinus lateralis. J. biophys. biochem. Cytol. 4, 571–574 (1958).

    Google Scholar 

  • Holmberg, A.: Ultrastructural changes in the ciliary epithelium following inhibition of secretion of aqueous humour in the rabbit eye. Stockholm: Axlings Bok & Tidskriftstryckeri 1957.

    Google Scholar 

  • Holmgren, E.: Weitere Mitteilungen über die „Saftkanälchen“ der Nervenzellen. Anat. Anz. 18, 290–296 (1900).

    Google Scholar 

  • Katz, B.: Mechanisms of synaptic transmission. Rev. mod. Physics 31, 524–531 (1959).

    Google Scholar 

  • Kloot, W. G. van der: Neurosecretion in insects. Ann. Rev. Entomol. 18, 35–52 (1960).

    Google Scholar 

  • Knowles, F. G. W.: The control of pigmentary effectors. In: Comparative proceedings of the Columbia University, Symposium on comparative endocrinology, p. 223–232. New York: J. Wiley & Sons 1959.

    Google Scholar 

  • Luft, J. H.: Permanganate: A new fixative for electron microscopy. J. biophys. biochem. Cytol. 2, 799–802 (1956).

    Google Scholar 

  • Palay, S. L.: An electron microscope study of the neurohypophysis in normal, hydrated and dehydrated rats. Anat. Rec. 121, 384, Abstract No 247 (1955).

    Google Scholar 

  • —: The fine structure of secretory neurons in the preoptic nucleus of the goldfisch (Carassius auratus). Anat. Rec. 138, 417–443 (1960).

    Google Scholar 

  • —, and G. Palade: The fine structure of neurons. J. biophys. biochem. Cytol. 1, 69–88 (1955).

    Google Scholar 

  • Robertson, J. D.: Recent electron microscope observations on the ultrastructure of the crayfish median-to-motor giant synapse. Exp. Cell Res. 8, 226–229 (1955).

    Google Scholar 

  • —: Preliminary observations on the ultrastructure of Ranvier nodes. Z. Zellforsch. 50, 533–560 (1959).

    Google Scholar 

  • Roeder, K. D.: The nervous system. Ann. Rev. Entomol. 3, 1–18 (1958).

    Google Scholar 

  • Salpeter, M. M., and C. Walcott: An electron microscopical study of a vibration receptor in the spider. Exp. Neurology 2, 232–250 (1960).

    Google Scholar 

  • Sanchez u. Sanchez, D.: Contribution a l'étude de l'origine et de l'évolution de certain types de neuroglie chez les Insectes. Trab. Lab. Invest. biol. Univ. Madrid 30, 299–353 (1935).

    Google Scholar 

  • Scharer, B. C. J.: The differentiation between neuroglia and connective tissue sheath in the cockroach (Periplaneta americana). J. comp. Neurol. 70, 77–88 (1939).

    Google Scholar 

  • Smith, D. S.: Innervation of the fibrillar flight muscle of an insect Tenebrio molitor (Coleoptera). J. biophys. biochem. Cytol. 8, 446–447 (1960).

    Google Scholar 

  • Smith, S. W.: “Reticular” and “Areticular” Nissl bodies in sympathetic neurons of a lizard. J. biophys. biochem. Cytol. 6, 77–84 (1959).

    Google Scholar 

  • Sotelo, J. R.: Technical improvements in specimen preparation for electron microscopy. Exp. Cell Res. 13, 599 (1957).

    Google Scholar 

  • — and K. R. Porter: An electron microscope study of the rat ovum. J. biophys. biochem. Cytol. 5, 327–342 (1959).

    Google Scholar 

  • -, u. O. Trujillo-Cenóz: Un componente submicroscópico de la célula. Los cuerpos multivesiculares. Asociación Latino Americana de Ciencias Fisiológicas. Ira. Reunión Científica 163–164, 1957.

  • Stäubli, W.: Nouvelle matière d'inclusion hydrosoluble pour la cytologie electronique. C. R. Acad. Sci. (Paris) 250, 1137–1139.

  • Trujillo-Cenóz, O.: Study on the fine structure of the central nervous system of Pholus labruscoe (Lepidoptera). Z. Zellforsch. 49, 432–446 (1959).

    Google Scholar 

  • —: The fine structure of a special type of nerve fiber found in the ganglia of Armadillidium vulgare (Crustacea isopoda). J. biophys. biochem. Cytol. 7, 185–186 (1960).

    Google Scholar 

  • Wigglesworth, V. B.: The histology of the nervous system of an insect Rhodnius prolixus (Hemiptera). II. The central ganglia. Quart. J. micr. Sci. 100, 299–313 (1959).

    Google Scholar 

  • —: Axon structure and the Dyctyosomes (Golgi bodies) in the neurons of the cockroach. Periplaneta Americana. Quart. J. micr. Sci. 101, 381–388 (1960).

    Google Scholar 

  • Zetterquist, H.: The ultrastructural organization of the columnar absorbing cells of the mouse jejunum. Stockholm: Aktiebolaget Golvil 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trujillo-Cenóz, O. Some aspects of the structural organization of the arthropod ganglia. Z.Zellforsch 56, 649–682 (1962). https://doi.org/10.1007/BF00540589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540589

Keywords

Navigation