Skip to main content
Log in

Discrepancies between scientific theory and practice in relation to physiological hypotheses

  • Published:
Theoretical Medicine Aims and scope Submit manuscript

Abstract

We give anecdotal accounts from our own experience of scientific theories which have been generally accepted as the ‘ruling opinion’ long after sufficient evidence has been collected for their disproof. This has led us to the opinion that the normal scientific process, of working hypothesis followed by experimental test aimed at disproof, is being replaced by the ‘ruling opinion’ followed by experiment aimed at confirmation. The apparently widespread adoption of this procedure may be postulated to arise in part from the need for workers entering a new field of study to obtain grants and to get their results published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borejdo, J.: 1980, ‘Tension fluctuations in contracting myofibrils and their interpretation’, Biophys. J. 29, 49–64.

    Google Scholar 

  • Borgers, M., Thone, F., Verheyen, A., and ter Keurs, H. E. D. J.: 1984, ‘Localization of calcium in skeletal and cardiac muscle’, Histochem. J. 16, 295–309.

    Google Scholar 

  • Boyle, P. J. and Conway, E. F.: 1941, ‘Potassium accumulation in muscle and associated changes’, J. Physiol. 100, 1–63

    Google Scholar 

  • Cope, F. W.: 1969, ‘Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain’, Biophys. J. 9, 303–319.

    Google Scholar 

  • Deleze, J. B.: 1961, ‘The mechanical properties of the semitendinosus muscle at lengths greater than its length in the body’, J. Physiol. 158, 154–164.

    Google Scholar 

  • Donnan, F. G.: 1911, ‘Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalischchemischen Physiologie’, Z. Elektrochem. 17, 572–581.

    Google Scholar 

  • Donnan, F. G. and Allmand, A. J.: 1914, ‘Ionic equilibria across semi-permeable membranes’, J. Chem. Soc. 105, 1941–1963.

    Google Scholar 

  • Donnan, F. G. and Guggenheim, E. A.: 1932, Die genaue Thermodynamik der Membrangleichgewichte. Z. Phys. Chem. 162, 346–360.

    Google Scholar 

  • Drake-Holland, A. J. and Noble, M. I. M.: 1983, Cardiac Metabolism. J. Wiley & Sons, Chichester, p. 61.

    Google Scholar 

  • Drake-Holland, A. J., Noble, M. I. M., Pieterse, M., Schouten, V. J. A., Seed, W. A., ter Keurs, H. E. D. J., and Wohlfart, B.: 1983, ‘Cardiac action potential duration and contractility in the intact dog heart’, J. Physiol. 345, 75–85.

    Google Scholar 

  • Edman, K. A. P., Elzinga, G., and Noble, M. I. M.: 1978, ‘Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres’, J. Physiol. 281, 139–155.

    Google Scholar 

  • Edman, K. A. P., Elzinga, G., and Noble, M. I. M.: 1981, ‘The critical sarcomere extension required to recruit a decaying component of extra force during stretch during tetanic contractions of frog skeletal muscle fibres’, J. Gen. Physiol. 78, 365–382.

    Google Scholar 

  • Edman, K. A. P., Elzinga, G., and Noble, M. I. M.: 1982, ‘Residual force enhancement after stretch of contracting frog single muscle fibres’, J. Gen. Physiol. 80, 769–784.

    Google Scholar 

  • Endo, M.: 1972, ‘Stretch induced increase in activation of skinned muscle fibres by calcium’, Nature New Biol. 237, 211–213.

    Google Scholar 

  • Fabiato, A.: 1983, ‘Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum’, Am. J. Physiol. 245 (Cell Physiol 4) C1-C14.

    Google Scholar 

  • Fung, B. M.: 1975, ‘Orientation of water in striated frog muscle’, Science 190, 800–802.

    Google Scholar 

  • Goldsmith, M. and Damadian, R.: 1974, ‘Biological ion exchange resins: V. The invalidity of the Donnan equation’, Physiol. Chem & Physics 6, 51–65.

    Google Scholar 

  • Heppel, L. A.: 1940, ‘The diffusion of radioactive sodium into the muscles of potassium-deprived rats’, Am. J. Physiol. 128, 449–454.

    Google Scholar 

  • Hill, A. V. and Kupalov, P. S.: 1930, ‘The vapour pressure of muscle’, Proc. Roy. Soc. B. 106, 445–477.

    Google Scholar 

  • Huxley, A. F.: 1957, ‘Muscle structure and theories of contraction’, Prog. Biophys. 7, 257–318.

    Google Scholar 

  • Iwazumi, T.: 1984, ‘No tension fluctuation in normal and healthy single myofibrils’, Biophys. J. 45, 158a.

    Google Scholar 

  • Iwazumi, T.: 1985, ‘Slow stretches and releases of the contracting myofibril (bullfrog atria) to test tension fluctuations due to cross-bridge mechanical cycling’, J. Physiol. 366, 69P.

    Google Scholar 

  • Kuntz, I. D., Brassfield, T. S., Law, G. D., and Purcell, G.: 1969, ‘Hydration of macromolecules’, Science 163, 1329–1331.

    Google Scholar 

  • Langer, G. A: 1983, ‘Calcium exchange in the heart’, NATO Advanced Studies Institute: Heart Perfusion, Energetics and Ischaemia. Eds. L. Dintenfass, D. Julian and F. Seaman, Plenum Press, New York., pp. 455–469.

    Google Scholar 

  • Langer, G. A.: 1985, ‘The effect of pH on cellular and membrane calcium binding and contraction of myocardium: a possible role for sarcolemmal phospholipid in EC coupling’, Circulation Res. 57, 374–382

    Google Scholar 

  • Ling, G. N.: 1978, ‘Maintainance of low sodium and high potassium levels in resting muscle cells’, J. Physiol. 280, 105–123.

    Google Scholar 

  • Ling, G. N., Miller, C., and Ochsenfield, M. M.: 1973 ‘The physical state of solutes and water in living cells according to the association-induction hypothesis’, Ann. NY Acad. Sci. 204, 6–50.

    Google Scholar 

  • Lüllmann, H. and Peters, Th.: 1977, ‘Plasmalemmal calcium in cardiac excitation-contraction coupling’, Clinical and Experimental Pharmacology 4, 49–57.

    Google Scholar 

  • Lüllmann, H. and Peters, Th.: 1979, ‘Action of cardiac glycosides on the excitation-contraction coupling in heart muscle’, Progress in Pharmacology 2, 5–57.

    Google Scholar 

  • Morad, M. and Goldman, Y.: 1973, ‘Excitation-contraction coupling in heart muscle; membrane control of development of tension’, Prog. Biophys. Mol. Biol. 27, 257–313.

    Google Scholar 

  • Noble, M. I. M. and Pollack, G. H.: 1975, ‘Some considerations favouring the electrostatic as opposed to the physical cross-link theory of cross-projection action in striated muscle’, J. Physiol. 251, 63–64P.

    Google Scholar 

  • Noble, M. I. M. and Pollack, G. H.: 1977, ‘Molecular mechanisms of contraction’, Circulation Res. 40, 333–341.

    Google Scholar 

  • Popper, K.: 1972, Conjectures and Refutations: The Growth of Scientific Knowledge, 4th edition, Routledge and Kegan Paul, London.

    Google Scholar 

  • Steinbach, H. B.: 1940, ‘Sodium and potassium in frog muscle’, J. Biol. Chem. 133, 695–701.

    Google Scholar 

  • Van Belle, H.: 1983, ‘A critical review on cyclic AMP and its role in celllular metabolism and heart contractility’, in Drake-Holland, A. J. and Noble, M. I. M. Cardiac Metabolism, John Wiley & Sons, New York, pp. 417–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noble, M.I.M., Drake-Holland, A.J. Discrepancies between scientific theory and practice in relation to physiological hypotheses. Theor Med Bioeth 7, 219–231 (1986). https://doi.org/10.1007/BF00539843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00539843

Key words

Navigation