Skip to main content
Log in

Hemmung der Lipolyse durch α- und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie Aims and scope Submit manuscript

Zusammenfassung

An Ratten wurde die Wirkung von α-Sympathicolytica (Phentolamin, Phenoxybenzamin), β-Sympathicolytica [Dichlorisoproterenol, Pronethalol, Methylphenoxy-isopropylaminopropanol (Kö 592), Propranolol], Nicotinsäure und Prostaglandin E 1 auf die Lipolyse untersucht.

1. An unvorbehandelten, gefütterten Ratten wurde der Plasmaspiegel an unveresterten Fettsäuren durch Injektion von Dichlorisoproterenol, Pronethalol, Phentolamin und Phenoxybenzamin erhöht, blieb dagegen nach Injektion 10–100 fach höherer Dosen von Kö 592 oder Propranolol praktisch unbeeinflußt und wurde durch Nicotinsäure signifikant erniedrigt.

2. Vorbehandlung der Tiere mit β-Sympathicolytica (z. B. Kö 592) verhinderte die lipolytische Wirkung des Noradrenalins ohne diejenige des ACTH zu beeinflussen. Demgegenüber wurde durch α-Sympathicolytica (z. B. Phenoxybenzamin) die lipolytische Wirkung von Noradrenalin und ACTH etwa gleichstark gehemmt, durch Nicotinsäure aber vollständig aufgehoben. — Die verstärkte Lipolyse im Hungerzustand, beim Alloxan-Diabetes, sowie nach Injektion von Physostigmin wurde durch Nicotinsäure, nicht aber durch Kö 592 verhindert, während der Fettsäureanstieg beim Kälte-Stress auch durch Kö 592 stark abgeschwächt wurde.

Durch Anwendung von β-Sympathicolytica und Nicotinsäure ist es somit möglich, bei einer verstärkten Lipolyse unbekannter Genese zwischen adrenergischen und nicht-adrenergischen Mechanismen zu unterscheiden.

3. Am isolierten, epididymalen Fettgewebe der Ratte verhinderten β-Sympathicolytica (Kö 592, Propranolol) die lipolytische Wirkung des Noradrenalins schon in Konzentrationen, welche die lipolytische Wirkung des ACTH noch unbeeinflußt ließen, während α-Sympathicolytica (Phentolamin, Phenoxybenzamin) die Wirkung des Noradrenalins und des ACTH etwa gleich stark hemmten.

4. In vitro hemmte Prostaglandin E1 die „spontane“ Lipolyse, die gesteigerte Lipolyse alloxandiabetischer Ratten und auch die lipolytische Wirkung des Noradrenalins; es war jedoch nicht imstande, die erhöhte Lipolyse hungernder Ratten zu beeinflussen.

5. Als Angriffspunkt der β-Sympathicolytica kommt die Adenylcyclase des Fettgewebes in Frage, denn es spricht vieles dafür, daß die Triglyceridlipase — ähnlich wie die Phosphorylase — durch cyclisches Adenosin-3′,5′-monophosphat aktiviert wird.

Summary

In rats the antilipolytic effects of α-adrenolytics (phentolamine, phenoxybenzamine), β-adrenolytics (dichloroisoproterenol, pronethalol, propranolol, Kö 592 [1-(3-methylphenoxy)-3-isopropylaminopropanol-2], nicotinic acid and prostaglandin E 1 have been studied.

1. In untreated fed rats the plasma level of free fatty acids (FFA) was increased by subcutaneous injection of dichloroisoproterenol, pronethalol, phentolamine and phenoxybenzamine, while 10 to 100 times higher doses of Kö 592 or propranolol had no significant effect; in contrast plasma FFA were lowered by nicotinic acid.

2. In vivo, the FFA mobilizing effect of norepinephrine was blocked by pretreatment with Kö 592 at a dose which had no effect upon the lipolytic action of ACTH. In contrast, both the effects of norepinephrine and ACTH were inhibited to about the same degree by the α-adrenolytic phenoxybenzamine and completely blocked by pretreatment with nicotinic acid. Unlike FFA mobilization during cold exposure, increased lipolysis in fasting or diabetic rats, or following the injection of physostigmine was not inhibited by pretreatment with Kö 592; increase of plasma FFA after the injection of theophylline was only reduced by Kö 592, while all effects were completely blocked by nicotinic acid.

Using Kö 592 — or any potent β-adrenolytic — and nicotinic acid resp. it is thus possible to differentiate between adrenergic and nonadrenergics mechanisms leading to lipolysis.

3. In vitro, i. e. upon incubation with epididymal adipose tissue of rats, the lipolytic effect of norepinephrine was inhibited by both α- and β-adrenolytics. To obtain 50% inhibition of a standard dose of norepinephrine (6×10−7 M), however, more than 100 times higher concentrations of the α-adrenolytics phentolamine or phenoxybenzamine were required as compared to the β-adrenolytics Kö 592 or propranolol. Pronethalol was 40 times less avtive than Kö 592, while iproveratril had only weak antilipolytic activity.

If ACTH was the lipolytic stimulant α- and β-adrenolytics were equally effective; however, the concentrations of the β-adrenolytics necessary to block a standard dose of ACTH by 50% were up to 500 times higher than those used in the experiments with norepinephrine as the lipolytic stimulant.

4. Unlike the β-adrenolytics, prostaglandin E1 (PGE) inhibited in vitro spontaneous lipolysis as well as lipolysis induced by norepinephrine, ACTH or alloxan diabetes. PGE had no inhibitory effect in fat pads of fasting rats.

5. The possible sites of action of the various inhibitors are discussed, particularly the possibility that adenyl cyclase might be the site of action of the β-adrenolytics. This assumption is favored by evidence that lipolysis is induced in much the same manner as glycogenolysis, i.e. through the formation of cyclic adenosine-3′,5′-monophosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Ahlquist, R. P.: A study of the adrenotropic receptors. Amer. J. Physiol. 153, 586 (1948).

    Google Scholar 

  • Ariëns, E. J., J. M. Van Rossum, and A. M. Simonis: A theoretical basis of molecular pharmacology. Part I: Interaction of one or two compounds with one receptor system. Arzneimittel-Forsch. 6, 282 (1956).

    Google Scholar 

  • Bally, P. R.: zit. nach Carlson, L. A., and P. R. Bally: Inhibition of lipid mobilization. In: Handbook of physiology, section 5, adipose tissue, p. 557. Baltimore: Williams and Wilkins 1965.

    Google Scholar 

  • Bergström, S., L. A. Carlson, and L. Orö: Effect of prostaglandins on catecholamine induced changes in the free fatty acids of plasma and in blood pressure in the dog. Acta physiol. scand. 60, 170 (1964).

    Google Scholar 

  • Björntorp, P., and R. H. Furman: Lipolytic activity in rat heart. Amer. J. Physiol 203, 323 (1962).

    Google Scholar 

  • Brodie, B. B., J. I. Davies, S. Hynie, G. Krishna, and B. Weiss: Inter-relationships of catecholamines with other endocrine systems. Pharmacol. Rev. 18, 273 (1966).

    Google Scholar 

  • ——, and D. N. Stern: Autonomic nervous system and adipose tissue. In: Handbook of physiology, section 5, adipose tissue, p. 583. Baltimore: Williams and Wilkins 1965.

    Google Scholar 

  • Burns, J. J., K. I. Colville, L. A. Lindsay, and R. A. Salvador: Blockade of some metabolic effects of catecholamines by N-isopropyl methoxamine (B. W. 61–43). J. Pharmacol. exp. Ther. 144, 163 (1964).

    Google Scholar 

  • Butcher, R. W., R. J. Ho, H. C. Meng, and E. W. Sutherland: Adenosine-3′,5′-monophosphate in biological materials II: the measurement of cyclic 3′,5′-AMP in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem. 240, 4515 (1965).

    Google Scholar 

  • Carlson, L. A.: Studies of the effect of nicotinic acid on catecholamine stimulated lipolysis in adipose tissue in vitro. Acta med. scand. 173, 719 (1963).

    Google Scholar 

  • ——, and L. Orö: The effect of nicotinic acid on the plasma free fatty acids. Demonstration of a metabolic type of sympathicolysis. Acta med. scand. 172, 641 (1962).

    Google Scholar 

  • ——, and J. Östman: Inhibition of the mobilization of free fatty acids from adipose tissue in diabetes. Acta med. scand. 177, 631 (1965).

    Google Scholar 

  • Dole, V. P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest. 35, 150 (1956).

    Google Scholar 

  • —— Effect of nucleic acid metabolites on lipolysis in adipose tissue. J. biol. Chem. 236, 3125 (1961).

    Google Scholar 

  • Engelhardt, A.: Methode zur Auswertung von β-Adrenolytica am isolierten Herzvorhof. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 250, 245 (1965).

    Google Scholar 

  • Euler, U. S. von: Zur Kenntnis der pharmakologischen Wirkungen von Natursekreten und Extrakten männlicher accessorischer Geschlechtsdrüsen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 175, 78 (1934).

    Google Scholar 

  • Farkas, T., R. Vertua, M. M. Usardi, and R. Paoletti: Investigations on the mechanism of action of nicotinic acid. Life Sci. 3, 821 (1964).

    Google Scholar 

  • Fröberg, S., and L. Orö: The effects of nicotinic acid, phentolamine and nethalide on the plasma free fatty acids and the blood pressure in the dog. Acta med. scand. 174, 635 (1963).

    Google Scholar 

  • Garattini, S., and A. Bizzi: Effect of drugs on mobilization of free fatty acid. Pharmacol. Rev. 18, 243 (1966).

    Google Scholar 

  • Gilgen, A., R. P. Maickel, O. Nikodijević, and B. B. Brodie: Essential role of catecholamines in the mobilization of free fatty acids and glucose after exposure to cold. Life Sci. 1, 709 (1962).

    Google Scholar 

  • Goodman, H. M., and E. Knobil: Effect of adrenergic blocking agents on fatty acid mobilization during fasting. Proc. Soc. exp. Biol. (N. Y.) 102, 493 (1959).

    Google Scholar 

  • Havel, R. J.: Autonomic nervous system and adipose tissue. In: Handbook of physiology, section 5, adipose tissue, p. 575. Baltimore: Williams and Wilkins 1965.

    Google Scholar 

  • ——, and A. Goldfien: The role of the sympathetic nervous system in the metabolism of free fatty acids. J. Lipid Res. 1, 102 (1959).

    Google Scholar 

  • Hollenberg, C. H., and I. Horowitz: The lipolytic activity of rat kidney cortex and medulla. J. Lipid Res. 3, 445 (1962).

    Google Scholar 

  • ——, and E. B. Astwood: The lipolytic response to corticotropin. Endocrinology 68, 589 (1961).

    Google Scholar 

  • Horton, E. W.: Biological activities of pure prostaglandins. Experientia (Basel) 21, 113 (1965).

    Google Scholar 

  • Hugget, A. St. G., and D. A. Nixon: Enzymic determination of blood glucose. Biochem. J. 66, 12 P (1957).

  • Klainer, L. M., Y. M. Chi, S. L. Freidberg, T. W. Rall, and E. W. Sutherland: Adenyl cyclase. IV. The effect of neurohormones on the formation of adenoisine 3′,5′-phosphate by preparations from brain and other tissues. J. viol. Chem. 237, 1239 (1962).

    Google Scholar 

  • Köppe, H., A. Engelhardt, G. Ludwig u. K. Zeile: Belg. Pat. 652, 336 (1965).

    Google Scholar 

  • Korn, E. D.: Clearing factor. A heparin-activated lipoproteinlipase. I. Isolation and characterization of the enzyme from normal rat heart. J. biol. Chem. 215, 1 (1955).

    Google Scholar 

  • ——, and T. W. Quigley: Studies on lipoprotein lipase of rat heart and adipose tissue. Biochim. biophys. Acta (Amst.) 18, 143 (1955).

    Google Scholar 

  • Maling, H. M., M. A. Williams, B. Highman, J. Garbus, and J. Hunter: The influence of phenoxybenzamine and isopropylmethoxamine (B. W. 61–43) on some cardiovascular, metabolic and histopathologic effects of norepinephrine infusion in dogs. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 54 (1964).

    Google Scholar 

  • Mashburn, L., R. Brown, and W. S. Lynn: Liberation and stimulation of adipose tissue lipase. Fed. Proc. 19, 224 (1960).

    Google Scholar 

  • Mayer, S., N. C. Moran, and J. Fain: The effect of adrenergic blocking agents on some metabolic actions of catecholamines. J. Pharmacol. exp. Ther. 134, 18 (1961).

    Google Scholar 

  • Mühlbachová, E., M. Wenke, S. Hynie, and K. Dolejsová: Interactions of some sympathotropic agents affecting lipid mobilization. Arch. int. Pharmacodyn. 144, 454 (1963).

    Google Scholar 

  • Northrop, G., and R. E. Parks: The effect of adrenergic blocking agents and theophyllin on 3′,5′-AMP-induced hyperglycemia. J. Pharmacol. exp. Ther. 145, 87 (1964).

    Google Scholar 

  • Östman, J.: Effect of nicotinic acid on the fatty acid metabolism of adipose tissue in alloxan diabetes. Metabolism 13, 675 (1964).

    Google Scholar 

  • Paoletti, R., R. L. Smith, R. P. Maickel, and B. B. Brodie: Identification and physiological role of norepinephrine in adipose tissue. Biochem. biophys. Res. Commun. 5, 424 (1961).

    Google Scholar 

  • Pilkington, T. R. E., R. D. Lowe, B. F. Robinson, and E. Titterington: Effect of adrenergic blockade on glucose and fatty acid mobilisation in man. Lancet 1962 II, 316.

    Google Scholar 

  • Rizack, M. A.: An epinephrine-sensitive lipolytic activity in adipose tissue. J. biol. Chem. 236, 657 (1961).

    Google Scholar 

  • —— Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine 3′,5′-phosphate. J. biol. Chem. 239, 392 (1964).

    Google Scholar 

  • Schotz, M. C., and I. H. Page: Effect of adrenergic blocking agents on the release of free fatty acids from rat adipose tissue. J. Lipid Res. 1, 466 (1960).

    Google Scholar 

  • Schusterová, D., D. Krciková, E. Mühlbachová, S. Hynie, and M. Wenke: Influence of some new beta-sympathotropic agents on lipid mobilization in vitro. Int. J. Neuropharmacol. 3, 129 (1964).

    Google Scholar 

  • Sidman, R. L., M. Perkins, and N. Weiner: Noradrenaline and adrenaline content of adipose tissue. Nature (Lond.) 193, 36 (1962).

    Google Scholar 

  • Steinberg, D., M. Vaughan, P. J. Nestel, and S. Bergström: Effects of prostaglandin E opposing those of the catecholmines on blood pressure and on triglyceride breakdown in adipose tissue. Biochem. Pharmacol. 12, 764 (1963).

    Google Scholar 

  • —— —— ——, and S. Bergström: Effects of the prostaglandins on hormone-induced mobilization of free fatty acids. J. clin. Invest. 43, 1533 (1964).

    Google Scholar 

  • Stern, D. N., and R. P. Maickel: Studies on the starvation-induced hypermobilization of free fatty acids. Life Sci. 2, 872 (1963).

    Google Scholar 

  • Stock, K., and E. Westermann: Concentration of norepinephrine, serotonin and histamine, and amine-metabolizing enzymes in mammalian adipose tissue. J. Lipid Res. 4, 297 (1963).

    Google Scholar 

  • —— —— Quantitative estimation and tissue distribution of Kö 592, 1-(3-methylphenoxy)-3-isopropylaminopropanol-2-hydrochloride, a new sympathetic β-receptor blocking agent. Biochem. Pharmacol. 14, 227 (1965a).

    Google Scholar 

  • —— —— Über die Bedeutung des Noradrenalingehaltes im Fettgewebe für die Mobilisierung unveresterter Fettsäuren. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 456 (1965b).

    Google Scholar 

  • —— —— Effect of adrenergic blockade and nicotinic acid on the mobilization of free fatty acids. Life Sci. 4, 1115 (1965c).

    Google Scholar 

  • —— Über die lipolytische Wirkung von natürlichen und synthetischem adrenocorticotropem Hormon (ACTH). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 251, 488 (1965d).

    Google Scholar 

  • —— —— Über den Mechanismus der lipolytischen Wirkung des Physostigmins. Naunyn-Schmiedebergs Arch. exp. path. Pharmak. 252, 433 (1966a).

    Google Scholar 

  • —— Hemmung der Lipolyse durch Prostaglandin E1. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 253, 86 (1966b).

    Google Scholar 

  • Strand, O., M. Vaughan, and D. Steinberg: Rat adipose tissue lipases: hormone-sensitive lipase activity against triglycerides with activity against lower glycerides. J. Lipid Res. 5, 554 (1964).

    Google Scholar 

  • Sutherland, E. W., and T. W. Rall: The relation of adenosine 3′,5′-phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12, 265 (1960).

    Google Scholar 

  • Vaughan, M.: Effect of hormones on phosphorylase activity in rat adipose tissue. J. biol. Chem. 235, 3049 (1960).

    Google Scholar 

  • Vaughan, M.: The production and release of glycerol by adipose tissue incubated in vitro. J. biol. Chem. 237, 3354 (1962).

    Google Scholar 

  • ——, and D. Steinberg: Hormone sensitive lipase activities in adipose tissue. J. biol. Chem. 239, 401 (1964).

    Google Scholar 

  • Vertua, R., M. M. Usardi, R. Bombelli, T. Farkas, and R. Paoletti: The effect of nicotinic acid on free fatty acid mobilization. Life Sci. 3, 281 (1964).

    Google Scholar 

  • Weinges, K. F., u. G. Löffler: Glucagon-empfindliche lipolytische Aktivität im Fettgewebe. Klin. Wschr. 43, 175 (1965).

    Google Scholar 

  • Wenke, M.: Diskussionsbemerkung. Pharmacol. Rev. 18, 253 (1966).

    Google Scholar 

  • ——, and S. Hynie: Effects of some sympathotropic agents on the lipid metabolism. Arch. int. Pharmacodyn. 136, 104 (1962).

    Google Scholar 

  • —— ——, and S. Hynie: Effect of directly acting sympathomimetic drugs on lipid metabolism in vitro. Int. J. Neuropharmacol. 3, 283 (1964).

    Google Scholar 

  • Westermann, E.: Sympathicus und Fettstoffwechsel. Symposion der Deutschen Neurovegetativen Gesellschaft über „Stoffwechsel und Vegetative Regulationszentren“ in Bonn, August 1965. Acta neuroveg. (Wien) (im Druck) (1966).

  • —— Mechanismus und pharmakologische Beeinflussung der endokrinen Lipolyse. 12. Symposium der Deutschen Gesellschaft für Endokrinologie über „Die endokrine Regulation des Fettstoffwechsels“ in Wiesbaden, April 1966. Berlin, Heidelberg, New York: Springer 1966 (im Druck).

    Google Scholar 

  • ——, u. K. Stock: Über die Bedeutung des Sympathicus für die Mobilisierung freier Fettsäuren. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 245, 102 (1963).

    Google Scholar 

  • —— —— Über die Wirkung von β-Sympathicolytica auf die Lipolyse. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 250, 290 (1965).

    Google Scholar 

  • —— —— u. P. Bieck: False Transmitter Substances in Mammalian Adipose Tissue. 2. Internationales Symposium über „Drugs Affecting Lipid Metabolism“ in Mailand, September 1965. Basel/Schweiz: Karger 1966 (im Druck).

    Google Scholar 

  • White, J. E., and F. L. Engel: Lipolytic action of corticotropin on rat adipose tissue in vitro. J. clin. Invest. 37, 1556 (1958).

    Google Scholar 

  • Wieland, O., u. M. Suyter: Glycerokinase: Isolierung und Eigenschaften des Enzyms. Biochem. Z. 329, 320 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. O. Schaumann zum 75. Geburtstag gewidmet.

Ausgeführt mit Unterstützung der Deutschen Forschungsgemeinschaft (We 272). Über einen Teil der Ergebnisse wurde auf Tagungen der Deutschen Pharmakologischen Gesellschaft (Westermann u. Stock, 1963, 1965; Stock u. Westermann, 1966b) und der Deutschen Gesellschaft für Endokrinologie (Westermann, 1966) berichtet, sowie in einer kurzen Mitteilung (Stock u. Westermann, 1965c).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stock, K., Westermann, E. Hemmung der Lipolyse durch α- und β-Sympathicolytica, Nicotinsäure und Prostaglandin E1 . Naunyn-Schmiedebergs Arch. Pharmak. u. Exp. Path. 254, 334–354 (1966). https://doi.org/10.1007/BF00538805

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00538805

Navigation