Skip to main content
Log in

Analysis of chaotic systems using the cell mapping approach

Analyse chaotischer Systeme mit der Zellabbildungsmethode

  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

Chaotic motions in deterministic nonlinear systems are an important topic both from a theoretical and a practical point of view. In particular, there have been many studies of systems which yield bounded nonperiodic trajectories converging to attractors of a rather complicated nature, so-called strange attractors. Their existence was demonstrated in a class of nonlinear oscillators with periodic forcing which occur in electric circuit theory and mechanics. The determination of the domain of attraction of such attractors, depending on the parameters, is an interesting problem. It is shown, that the cell mapping approach, i.e., a discrete version of a Poincaré map, represents a very efficient method for analyzing this problem.

Übersicht

Chaotische Bewegungen in deterministischen nichtlinearen Systemen sind sowohl unter theoretischen als auch praktischen Gesichtspunkten von Bedeutung. Viele Untersuchungen haben sich im besonderen mit Systemen beschäftigt, deren Bewegung durch nichtperiodische Trajektorien gekennzeichnet ist, die zu komplizierten Attraktoren, sogenannten seltsamen Attraktoren, konvergieren. Die Existenz dieser Attraktoren wurde an einer Reihe von nichtlinearen, periodisch erregten Oszillatoren demonstriert, welche in elektrischen Schwingkreisen und der Mechanik auftreten. Die Bestimmung des Einzugsgebietes solcher Attraktoren in Abhängigkeit von den Systemparametern ist ein interessantes Problem. Es wird gezeigt, daß die Zellabbildungsmethode, eine diskrete Version einer Poincaré-Abbildung, ein sehr effizientes Verfahren zur Analyse dieses Problems darstellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feigenbaum, M.: The transition to aperiodic behaviour in turbulent systems. Commun. Math. Phys. 77 (1980) 65–86

    Google Scholar 

  2. Ruelle, D.; Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20 (1971) 167–192

    Google Scholar 

  3. Shaw, R.: Strange attractors, chaotic behavior, and information flow. Z. Naturforschung 36 (1981) 80–112

    Google Scholar 

  4. Eckmann, J.-P.: Roads to turbulence in dissipative systems. Reviews of Modern Phys. 53 (1981) 643 to 654

    Google Scholar 

  5. Ott, E.: Strange attractors and chaotic motions of dynamical systems. Review of Modern Phys. 53 (1981) 655–671

    Google Scholar 

  6. Cayley, A.: Application of the Newton-Fourier method to an imaginary root of an equation. Quaterly J. of Pure and Appl. Math. XVI (1879) 179–185

    Google Scholar 

  7. Julia, G.: Mémoire sur l'itération des fonctions rationnelles. J. de Math. pures et appliquées, sér. 8.1 (1918) 47–245

    Google Scholar 

  8. Hsu, C. S.: A theory of cell-to-cell mapping dynamical systems. J. of Appl. Mech. 47 (1980) 931–939

    Google Scholar 

  9. Hsu, C. S.: A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. J. of Appl. Mech. 48 (1981) 634–642

    Google Scholar 

  10. Rannou, F.: Numerical study of discrete plane area-preserving mappings. Astron. and Astrophys. 31 (1974) 289–301

    Google Scholar 

  11. Bestle, D.; Kreuzer, E.: Analyse von Grenzzyklen mit der Zellabbildungsmethode Z. Angew. Math. Mech. 65 (1985) 4, T29-T32

    Google Scholar 

  12. Kreuzer, E. J.: Domains of attraction in systems with limit cycles. In: Proc. of German-Japanese Seminar on Nonlinear Problems in Dynamical Systems, Universität Stuttgart 1984, 8.1–8.24

  13. Guckenheimer, T.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  14. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50 (1976) 69–77

    Google Scholar 

  15. Lorenz, E. N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1983) 130–141

    Google Scholar 

  16. Ruelle, D.: Strange attractors. The Mathematical Intelligencer 2 (1980) 126–137

    Google Scholar 

  17. Feit, S. D.: Characteristic exponents and strange attractors. Commun. Math. Phys. 61 (1978) 249–260

    Google Scholar 

  18. Curry, J. H.: On the Hénon transformation. Commun. Math. Phys. 68 (1979) 129–140

    Google Scholar 

  19. Simó, C.: On the Hénon-Pomeau attractor. J. of Stat. Phys. 21 (1979) 465–494

    Google Scholar 

  20. Franceshini, V.; Russo, L.: Stable and unstable manifolds of the Hénon mapping. J. of Stat. Phys. 22 (1981) 757–769

    Google Scholar 

  21. Oseledec, V. I.: A multiplicativ ergodic theorem: Liapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968) 197–231

    Google Scholar 

  22. Ruelle, D.: Sensitive dependence on initial condition and turbulent behavior of dynamical systems. In: Bifurcation Theory and Applications in Scientific Disciplines. O. Gurel and O. E. Rössler (eds.) New York: New York Acad. of Sciences 1979, 408–446

    Google Scholar 

  23. Hsu, C. S.; Kim, M. C.: Statistics of strange attractors by generalized cell mapping. To appear in J. of Stat. Phys. (1985)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuzer, E.J. Analysis of chaotic systems using the cell mapping approach. Ing. arch 55, 285–294 (1985). https://doi.org/10.1007/BF00538223

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00538223

Keywords

Navigation