Skip to main content
Log in

The sensitizing pigment in fly photoreceptors

Properties and candidates

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

Many lines of evidence suggest that the ultraviolet (uv) sensitivity found in the most common photoreceptor class in the fly is due to a sensitizing pigment which transmits the energy of absorbed light quanta to the visual pigment (Kirschfeld et al. 1977). It is shown that the uv extinction of the rhabdomeres has a vibrational fine structure corresponding to that found in the receptors' spectral sensitivity (Gemperlein et al. 1980). The uv extinction is greatly reduced when flies are reared on a carotenoid-deficient diet, in which case the vibrational fine structure in sensitivity is also lost. Properties (extinction, fluorescence) of several groups of substances that could represent the sensitizing pigment are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boschek CB, Hamdorf K (1976) Rhodopsin particles in the photoreceptor membrane of an insect. Z Naturforsch 31c: 763

    Google Scholar 

  • Burkhardt D (1962) Spectral sensitivity and other response characteristics of single visual cells in the Arthropod eye. Symp. of the Soc. for Exp. Biol. XVI, Biol. Receptor Mechanisms, pp 86–109

  • Förster T (1951) Fluoreszenz organischer Verbindungen. Vandenhoeck und Ruprecht, Göttingen

    Google Scholar 

  • Franceschini N (1982) In vivo microspectrofluorimetry of visual pigments. Symp. Soc. Exp. Biol.

  • Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981a) Sexual dimorphism in a photoreceptor. Nature 291: 241–244

    Google Scholar 

  • Franceschini N, Kirschfeld K, Minke B (1981b) Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264–1267

    Google Scholar 

  • Fugate RD, Song P-S (1980) Spectroscopic characterization of Β-lactoglobulin-retinol complex. Biochim Biophys Acta 625: 28–42

    Google Scholar 

  • Gemperlein R, Paul R, Lindauer E, Steiner A (1980) UV fine structure of the spectral sensitivity of flies visual cells. Naturwissenschaften 67: 565–566

    Google Scholar 

  • Goldsmith TH, Barker RJ, Cohen CF (1964) Sensitivity of visual receptors of carotenoid-depleted flies: A vitamin A deficiency in an invertebrate. Science 146: 65–67

    Google Scholar 

  • Hamdorf K, Paulsen R, Schwemer J (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. in: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 155–166

    Google Scholar 

  • Hardie RC (1978) Peripheral visual function in the fly. PhD Thesis. A.N.U. Canberra, Australia

    Google Scholar 

  • Hardie RC (1979) Electrophysiological analysis of fly retina. In: Comparative properties of R1–6 and R7 and 8. J Comp Physiol 129: 19–33

    Google Scholar 

  • Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: Evidence for a sensitising function. Biophys Struct Mech 9: 171–180

    Google Scholar 

  • Harris WA, Ready DF, Lipson ED, Hudspeth AJ, Stark WS (1977) Vitamin A deprivation and Drosophila photopigments. Nature 266: 648–650

    Google Scholar 

  • Hemley R, Kohler BE (1977) Electronic structure of polyenes related to the visual chromophore. A simple model for the observed band shapes. Biophys J 20: 377–382

    Google Scholar 

  • Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitizing pigment in fly photoreceptors. Nature 269: 386–390

    Google Scholar 

  • Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomere of fly photoreceptors No. 7. J Comp Physiol 125: 275–284

    Google Scholar 

  • Koe BK, Zechmeister L (1952) In vitro conversion of phytofluene and phytoene into carotenoid pigments. Arch Biochem 41: 236–238

    Google Scholar 

  • Kuo A (1980) Elektrophysiologische Untersuchungen zur Spektralpund Polarisationsempfindlichkeit der Sehzellen von Calliphora erythrocephala I. Scientia Sinica 23: 1182–1196

    Google Scholar 

  • Minke B, Kirschfeld K (1979) The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J Gen Physiol 73: 517–540

    Google Scholar 

  • Ong DE, Chythil F (1978) Cellular retinol-binding protein from rat liver. Purification and characterization. Biol Chem 253: 828–832

    Google Scholar 

  • Oroshnik W, Karmas G, Mebane A (1952) Synthesis of polyenes I/Retrovitamin A methyl ether. Spectral relationships between the Β -ionylidene and retroionylidene series. J Am Chem Soc 74: 295–305

    Google Scholar 

  • Paulsen R, Schwemer J (1979) Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim Biophys Acta 557: 385–390

    Google Scholar 

  • Razmjoo S, Hamdorf K (1976) Visual sensitivity and the variation of total photopigment content in the blowfly photoreceptor membrane. J Comp Physiol 105: 279–286

    Google Scholar 

  • Reppe K (1970) In: Houben-Weyl, Methoden der Organischen Chemie, Vol. V/1 d. Müller E (ed). Thieme, Stuttgart, pp 7–31

    Google Scholar 

  • Schreckenbach T, Walckhoff B, Oesterhelt D (1977) Studies on the retinal-protein interaction in bacteriorhodopsin. Eur J Biochem 76: 499–511

    Google Scholar 

  • Schreckenbach T, Walckhoff B, Oesterhelt D (1978a) Properties of the retinal binding site in bacteriorhodopsin: Use of retinol and retinyl moieties as fluorescent probes. Photochem Photobiol 28: 205–211

    Google Scholar 

  • Schreckenbach T, Walckhoff B, Oesterhelt D (1978b) Specificity of the retinal binding site of bacteriorhodopsin: Chemical and stereochemical requirements for the binding of retinol and retinal. Biochemistry 17: 5353–5359

    Google Scholar 

  • Sklar LA, Hudson BS, Simoni RD (1975) Conjugated polyene fatty acids as membrane probes: preliminary characterization. Proc Natl Acad Sci USA 72: 1649–1653

    Google Scholar 

  • Sklar LA, Miljanich GP, Bursten SL, Dratz EA (1979) Thermal lateral phase separations in bovine retinal rod outer segment membranes and phospholipids as evidenced by parinaric acid fluorescence polarization and energy transfer. J Biol Chem 254: 9583–9591

    Google Scholar 

  • Stark WS, Zitzmann WG (1976) Isolation of adaptation mechanism and photopigment spectra by vitamin A deprivation in Drosophila. J Comp Physiol 105: 15–27

    Google Scholar 

  • Stark WS, Stavenga DG, Kruizinga B (1979) Fly photoreceptor fluorescence is related to uv sensitivity. Nature 280: 581–583

    Google Scholar 

  • Stavenga DG, Zantema A, Kuiper JW (1973) Rhodopsin processes and the function of the pupil mechanism in flies. In: Langer H (ed) Biochemistry and Physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 175–180

    Google Scholar 

  • Stavenga DG, Franceschini N, Kirschfeld K (1983) Fluorescence of visual pigments studied in the eye of intact flies (in press)

  • Vogt K, Kirschfeld K (1983) Sensitizing pigment in the fly. Biophys Struct Mech 9: 319–328

    Google Scholar 

  • Zechmeister L (1962) Cis-trans isomeric carotenoids vitamins A and arypolyenes. Springer, Wien

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirschfeld, K., Feiler, R., Hardie, R. et al. The sensitizing pigment in fly photoreceptors. Biophys. Struct. Mechanism 10, 81–92 (1983). https://doi.org/10.1007/BF00535544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00535544

Key words

Navigation