Skip to main content
Log in

Bohr-effect and pH-dependence of electron spin resonance spectra of a cobalt-substituted monomeric insect haemoglobin

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

The monomeric haemoglobin IV from Chironomus thummi thummi (CTT IV) exhibits an alkaline Bohr-effect and therefore it is an allosteric protein. By substitution of the haem iron for cobalt the O2 half-saturation pressure, measured at 25‡ C, increases 250-fold. The Bohr-effect is not affected by the replacement of the central atom. The parameters of the Bohr-effect of cobalt CTT IV for 25‡ C are: inflection point of the Bohr-effect curve at pH 7.1, number of Bohr protons -δlog p1/2 (O2)/gDpH=0.36 mol H+/mol O2 and amplitude of the Bohr-effect curve δlog p1/2 (O2)=0.84. The substitution of protoporphyrin for mesoporphyrin causes a 10 nm blue-shift of the visible absorption maxima in both, the native and the cobalt-substituted forms of CTT IV. Furthermore, the replacement of vinyl groups by ethyl groups at position 2 and 4 of the porphyrin system leads to an increase of O2 affinities at 25‡ C which follows the order: proto < meso < deutero for iron and cobalt CTT IV, respectively. Again, the Bohr-effect is not affected by the replacement of protoporphyrin for mesoporphyrin or deuteroporphyrin. The electron spin resonance (ESR) spectra of both, deoxy cobalt proto- and deoxy cobalt meso-CTT IV, are independent of pH. The stronger electron-withdrawing effect by protoporphyrin is reflected by the decrease of the cobalt hyperfine constants coinciding with g=2.035 and by the low-field shift of g. The ESR spectra of oxy cobalt proto- and oxy cobalt meso-CTT IV are dependent of pH. The cobalt hyperfine constants coinciding with g=2.078 increase during transition from low to high pH. The pH-induced ESR spectral changes correlate with the alkaline Bohr-effect. Therefore, the two O2 affinity states can be assigned to the low-pH and high-pH ESR spectral species. The low-pH form (low-affinity state) is characterized by a smaller, the high-pH form (high-affinity state) by a larger cobalt hyperfine constant in g. The correlation of the cobalt hyperfine constants of the oxy forms with the O2 affinities is discussed for several monomeric haemoglobins. The Co-O-O bond angle in cobalt oxy CTT IV is characterized by an ozonoid type of binding geometry and varies little during the pH-induced conformation transition. Due to the lack of the distal histidine in CTT IV no additional interaction via hydrogen-bonding with dioxygen is possible; this is reflected by the cobalt hyperfine constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gersonde K, Sick H, Wollmer A, Buse G (1972) Heterotropic allosterism of monomeric haemoglobins of Chironomus thummi thummi. Eur J Biochem 25: 181–189

    Google Scholar 

  2. Sick H, Gersonde K, Thompson JC, Maurer W, Haar W, Rüterjans H (1972) The Bohr proton-binding site in a monomeric haemoglobin. A nuclear-magnetic resonance study. Eur J Biochem 29: 217–223

    Google Scholar 

  3. Sick H, Gersonde K (1974) Ligand-specific Bohr-effect in haemoglobins. Eur J Biochem 45: 313–320

    Google Scholar 

  4. Gersonde K, Noll L, Gaud HT, Gill SJ (1976) A calorimetric study of the CO Bohr-effect of monomeric haemoglobins. Eur J Biochem 62: 577–582

    Google Scholar 

  5. Steffens G, Buse G, Wollmer A (1977) Ligand-dependent Bohr-effect of Chironomus hemoglobins. Eur J Biochem 72: 201–206

    Google Scholar 

  6. La Mar GN, Overkamp M, Sick H, Gersonde K (1978) Proton nuclear magnetic resonance hyperfine shifts as indicators of tertiary structural changes accompanying the Bohr-effect in monomeric insect hemoglobins. Biochemistry 17: 352–361

    Google Scholar 

  7. La Mar GN, Anderson RR, Budd DL, Smith KM, Langry KC, Gersonde K, Sick H (1981) Proton nuclear magnetic resonance investigation of the nature of the solution conformational equilibria of monomeric insect deoxy hemoglobins. Biochemistry 20: 4429–4436

    Google Scholar 

  8. Buse G, Steffens GJ, Braunitzer G, Steer W (1979) HÄmoglobin (Erythrocruorin) CTT III aus Chironomus thummi thummi (Diptera). PrimÄrstruktur und Beziehung zu anderen HÄmoglobinen. Hoppe-Seylers Z Physiol Chem 360: 89–97

    Google Scholar 

  9. Pfletschinger J, Plagens H, Braunitzer G (1980) The primary structure of the monomeric hemoglobin (Erythrocruorin) component CTT IV of Chironomus thummi thummi (Insecta, Diptera). Z Naturforsch 35c: 840–843

    Google Scholar 

  10. Steigemann W, Weber E (1979) Structure of Erythrocruorin in different ligand states refined at 1.4 å resolution. J Mol Biol 127: 309–338

    Google Scholar 

  11. Overkamp M, Twilfer H, Gersonde K (1976) Conformation-controlled trans-effect of the proximal histidine in haemoglobins. An electron spin resonance study of monomeric nitrosyl-57Fe-haemoglobins. Z Naturforsch 31c: 524–533

    Google Scholar 

  12. Twilfer H, Gersonde K (1976) Non-equivalence and inverse allosteric response of the α and Β chains in haemoglobins. An electron spin resonance study of NO-ligated Hb Kansas. Z Naturforsch 31c: 664–674

    Google Scholar 

  13. Huber R, Epp O, Formanek H (1970) Structures of deoxy and carbonmonoxy erythrocruorin. J Mol Biol 52: 349–354

    Google Scholar 

  14. Heidner EJ, Ladner RC, Perutz MF (1976) Structure of horse carbonmonoxyhaemoglobin. J Mol Biol 104: 707–722

    Google Scholar 

  15. Stryer L, Kendrew JC, Watson HC (1964) The mode of attachment of the azide ion to sperm whale metmyoglobin. J Mol Biol 8: 96–104

    Google Scholar 

  16. Perutz MF, Mathews FS (1966) An X-ray study of azide methaemoglobin. J Mol Biol 21: 199–202

    Google Scholar 

  17. Yonetani T, Yamamoto H, Iizuka T (1974) Studies on cobalt myoglobins and hemoglobins. III. Electron spin paramagnetic resonance studies of reversible oxygenation of cobalt myoglobins and hemoglobins. J Biol Chem 249: 2168–2174

    Google Scholar 

  18. Dickinson C, Chien JCW (1980) Electron paramagnetic resonance crystallography of 17O-enriched oxycobaltomyoglobin: Stereoelectronic structure of the cobalt dioxygen system. Proc Natl Acad Sci USA 77: 1235–1239

    Google Scholar 

  19. Asher SA, Adams ML, Schuster TM (1981) Resonance Raman and absorption spectroscopic detection of distal histidine-fluoride interactions in human methemoglobin fluoride and sperm whale metmyoglobin fluoride: Measurements of distal histidine ionization constants. Bio-chemistry 20: 3339–3346

    Google Scholar 

  20. Christahl M, Raap A, Gersonde K (1981) pH dependence of oxy and deoxy cobalt-substituted leghemoglobin from soybean. Biophys Struct Mech 7: 171–186

    Google Scholar 

  21. Griffith JS (1956) On the magnetic properties of some haemoglobin complexes. Proc R Soc (Lond) Ser A 235: 23–36

    Google Scholar 

  22. Pauling L (1964) Nature of the iron-oxygen bond in oxy haemoglobin. Nature 203: 182–183

    Google Scholar 

  23. Sugita Y, Yoneyama Y (1971) Oxygen equilibrium of hemoglobins containing unnatural hemes. Effect of modification of heme carboxyl groups and side chains at positions 2 and 4. J Biol Chem 246: 389–394

    Google Scholar 

  24. Seybert DW, Moffat K, Gibson QH (1976) Ligand binding properties of horse hemoglobins containing deutero- and mesoheme. J Biol Chem 251: 45–52

    Google Scholar 

  25. Fioretti E, Ascoli F, Brunori M (1976) Preparation of apohemoglobin trout IV and reconstitution with different hemes. Biochem Biophys Res Commun 68: 1169–1173

    Google Scholar 

  26. La Mar GN, Viscio DB, Gersonde K, Sick H (1978) Proton nuclear magnetic resonance study of the rotational position of oscillatory mobility of vinyl groups in allosteric monomeric insect hemoglobins. Biochemistry 17: 361–367

    Google Scholar 

  27. Hsu GC, Spilburg CA, Bull C, Hoffmann BM (1972) Coboglobins: Heterotropic linkage and the existence of a quaternary structure change upon oxygenation of cobalthemoglobin. Proc Natl Acad Sci USA 69: 2122–2124

    Google Scholar 

  28. Spilburg CA, Hoffmann BM, Petering DH (1972) Coboglobins. Influence of the apoprotein on oxygen binding to cobaltomyoglobin. J Biol Chem 247: 4219–4223

    Google Scholar 

  29. Dickinson LC, Chien JCW (1973) Comparative biological chemistry of cobalt hemoglobin. J Biol Chem 248: 5005–5011

    Google Scholar 

  30. Yonetani T, Yamamoto H, Woodrow III GV (1974) Studies on cobalt myoglobins and hemoglobins. I. Preparation and optical properties of myoglobins and hemoglobins containing cobalt proto-, meso-, and deuteroporphyrins and thermodynamic characterization of their reversible oxygenation. J Biol Chem 249: 682–690

    Google Scholar 

  31. Gersonde K, Twilfer H, Overkamp M (1977) Allostery of monomeric cobalt hemoglobins, 11th FEBS Meeting Copenhagen, Abstracts B2: 458

  32. Gersonde K, Twilfer H, Overkamp M (1978) ESR and oxygen-binding properties of monomeric allosteric cobalt haemoglobins. VIIIth International Conference on Magnetic Resonance in Biological Systems, Nara, Abstracts E10: 106

  33. Chien JCW, Dickinson LC (1972) Electron paramagnetic resonance of single crystal oxycobaltmyoglobin and deoxycobaltmyoglobin. Proc Natl Acad Sci USA 69: 2783–2787

    Google Scholar 

  34. Dickinson LC, Chien JCW (1973) Electron paramagnetic resonance of single crystal deoxycobalthemoglobin. Biochem Biophys Res Commun 51: 587–592

    Google Scholar 

  35. Yonetani T, Yamamoto H, Iizuka T (1974) Studies on cobalt myoglobins and hemoglobins. III. Electron paramagnetic resonance studies of reversible oxygenation of cobalt myoglobins and hemoglobins. J Biol Chem 249: 2168–2174

    Google Scholar 

  36. Gupta RK, Mildvan AS, Yonetani T, Srivastava TS (1975) EPR study of 17O nuclear hyperfine interaction in cobalt-oxyhemoglobin: Conformation of bound oxygen. Biochem Biophys Res Commun 67: 1005–1012

    Google Scholar 

  37. Ikeda-Saito M, Yamamoto H, Yonetani T (1977) Studies on cobalt myoglobins and hemoglobins. Electron paramagnetic resonance of iron-cobalt hybrid hemoglobins and its implication for the heme-heme interaction and for the alkaline Bohr-effect. J Biol Chem 252: 8639–8644

    Google Scholar 

  38. Rossi-Fanelli A, Antonini E, Caputo A (1958) Studies on the structure of hemoglobin. Physicochemical properties of human globin. Biochim Biophys Acta 30: 608–615

    Google Scholar 

  39. Amiconi G, Antonini E, Brunori M, Formanek H, Huber R (1972) Functional properties of native and reconstituted hemoglobins from Chironomus thummi thummi. Eur J Biochem 31: 52–58

    Google Scholar 

  40. Labbe RF, Nishida G (1957) A new method of hemin isolation. Biochim Biophys Acta 26: 437

    Google Scholar 

  41. Morrell DB, Stewart M (1956) The removal of iron from haemins. Austral J Exp Biol 34: 211–218

    Google Scholar 

  42. Taylor JF (1940) Metalloporphyrins: Cobalt and manganese mesoporphyrins in coordination with nitrogeneous bases. J Biol Chem 135: 569–595

    Google Scholar 

  43. Wüthrich K (1970) Structural studies of hemes and hemoproteins by nuclear magnetic resonance spectroscopy. Structure and Bonding, vol 8. Springer, Berlin Heidelberg New York, pp 53–121

    Google Scholar 

  44. Sick H, Gersonde K (1969) Method of continuous registration of O2-binding curves of hemoproteins by means of a diffusion chamber. Anal Biochem 32: 362–376

    Google Scholar 

  45. Sick H, Gersonde K (1972) Theory and application of the diffusion technique for measurement and analysis of O2-binding properties of very autoxidizable hemoproteins. Anal Biochem 47: 46–56

    Google Scholar 

  46. Twilfer H, Gersonde K, Christahl M (1981) Resolution enhancement of EPR spectra using the Fourier transform technique. Analysis of nitrosyl cytochrome c oxidase in frozen solution. J Magn Reson 44: 470–478

    Google Scholar 

  47. Gersonde K, Overkamp M, Sick H, Trittelvitz E, Junge W (1973) Β-Chain allostery in the frozen quaternary T-structure of haemoglobin M Iwate. Eur J Biochem 39: 403–412

    Google Scholar 

  48. Overkamp M (1979) Untersuchungen zur Allosterie in monomeren und dimeren HÄmoglobinen der Zuckmücke Chironomus thummi thummi (Diptera, Insecta). Dissertation, Aachen

  49. La Mar GN, Budd DL, Sick H, Gersonde K (1978) Acid Bohr effects in myoglobin characterized by proton NMR hyperfine shifts and oxygen binding studies. Biochim Biophys Acta 537: 270–283

    Google Scholar 

  50. Imai K, Yonetani T (1975) pH dependence of the Adair constants of human hemoglobin. Nonuniform contribution of successive oxygen bindings to the alkaline Bohr effect. J Biol Chem 250: 2227–2231

    Google Scholar 

  51. Imai K, Yonetani T (1975) Thermodynamical studies of oxygen equilibrium of hemoglobin. Nonuniform heats and entropy changes for the individual oxygenation steps and enthalpy-entropy compensation. J Biol Chem 250: 7093–7098

    Google Scholar 

  52. Tamura M, Woodrow III GV, Yonetani T (1973) Heme-modification studies of myoglobin. II. Ligand binding characteristics of ferric and ferrous myoglobins containing unnatural hemes. Biochim Biophys Acta 317: 34–49

    Google Scholar 

  53. Ikeda-Saito M, Iizuka T, Yamamoto H, Kayne FJ, Yonetani T (1977) Studies on cobalt myoglobins and hemoglobins. Interaction of sperm whale myoglobin and Glycera hemoglobin with molecular oxygen. J Biol Chem 252: 4882–4887

    Google Scholar 

  54. Imai K, Yonetani T, Ikeda-Saito M (1977) Allosteric effects in cobalto haemoglobin as studied by precise oxygen equilibrium measurements. J Mol Biol 109: 83–97

    Google Scholar 

  55. Little GR, Ibers JA (1974) Stereochemistry of cobalt porphyrins. I. The structure and characterization of 2,3,7,8,12,13,17,18-octaaethylporphinato-bis(3-methylpyridine)cobalt(II). J Am Chem Soc 96: 4440–4446

    Google Scholar 

  56. Yamamoto H, Kayne FJ, Yonetani T (1974) Studies on cobalt myoglobins and hemoglobins. II. Kinetic studies of reversible oxygenation of cobalt myoglobins and hemoglobins by the temperature jump relaxation method. J Biol Chem 249: 691–698

    Google Scholar 

  57. Ikeda-Saito M, Brunori M, Yonetani T (1978) Oxygenation and epr spectral properties of Aplysia myoglobins containing cobaltous porphyrins. Biochim Biophys Acta 533: 173–180

    Google Scholar 

  58. Kilmartin JV, Rossi-Bernardi L (1973) Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates. Physiol Rev 53: 836–890

    Google Scholar 

  59. Nicola NA, Leach SJ (1977) Structural rearrangements due to ligand binding and haem replacement in myoglobin and leghaemoglobin. Eur J Biochem 78: 133–140

    Google Scholar 

  60. Johnson RN, Bradbury JH, Appleby C (1978) A proton magnetic resonance study of the distal histidine of soybean leghemoglobin. J Biol Chem 253: 2148–2154

    Google Scholar 

  61. Perutz MF (1976) Structure and mechanism of haemoglobin. Br Med Bull 32: 195–208

    Google Scholar 

  62. Lauher JW, Ibers JA (1974) Stereochemistry of cobaltporphyrins. II. The characterization and structure of meso-tetraphenylporphinatobis(imidazole)cobalt(III) acetate monohydrate monochloroformate, (Co(Im)2(TPP)) (O Ac) · H2O · CHCl3. J Am Chem Soc 96: 4447–4452

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gersonde, K., Twilfer, H. & Overkamp, M. Bohr-effect and pH-dependence of electron spin resonance spectra of a cobalt-substituted monomeric insect haemoglobin. Biophys. Struct. Mechanism 8, 189–211 (1982). https://doi.org/10.1007/BF00535459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00535459

Key words

Navigation