Skip to main content
Log in

Theoretical study of the borane and diborane positive ions

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

We describe the geometric, electronic and energetic (ΔH f) properties of B2H +6 and BH +3 . Comparisons with experimental measurements have also been made with borane, diborane, BH, BH+ and BH +2 . All the theoretical calculations have been performed with various basis sets: 6-31G, 6-31G⋆⋆ and 6-31+G⋆⋆ (2d,f). The geometry optimizations are done at the SCF (RHF or UHF), MP2 and MP4 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Stock A (1933) Hydrides of boron and silicon. Cornell University Press, Ithaca, NY

    Google Scholar 

  2. Fehlner TP, Housecroft CE (1986) In: Liebman JF, Greenberg A (eds) Molecular structure and energetics, vol 1. Chemical bonding models. Verlag Chemie, Weinheim

    Google Scholar 

  3. Mohr RR, Lipscomb WN (1986) Inorg Chem 25:1053

    Google Scholar 

  4. Sana M, Leroy G, Henriet C (1988) J Mol Struct (Theochem), in press; where the scaling relation has been established in 6-31G⋆⋆ for a set of borane and diborane; other scaling factor is available from [16]

  5. Pople JA, Frisch M, Luke BT, Binkley JS (1983) Int J Quant Chem 17:307

    Google Scholar 

  6. BDE(BH3-BH3)=41.1−7.1+2=36.0 kcal mol−1: DeFrees DJ, Raghavachari K, Schlegel HB, Pople JA, Schleyer PvR (1987) J Phys Chem 91:1857

    Google Scholar 

  7. BDE(BH3-BH3)=37.4 and 35.4 kcal mol−1: Stanton JF, Bartlett RJ, Lipscomb WN, (1987) Chem Phys Lett 138:525

    Google Scholar 

  8. BDE(BH3-BH3) =40 + thermal corrections ≈ 36 kcal mol−1: Ortiz JV, Lipscomb WN (1983) Chem Phys Lett 103:59

    Google Scholar 

  9. BDE(BH3-BH3)=43.1−6.1+2.6=39.6 kcal mol−1: Page M, Adams GF, Binkley JS, Melius CF (1987) J Am Chem Soc 91:2675

    Google Scholar 

  10. Mappes GW, Fridmann SA, Fehlner TP (1970) J Phys Chem 74:3307

    Google Scholar 

  11. Fehlner TP, Koski WS (1964) J Am Chem Soc 86:2733

    Google Scholar 

  12. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) J Phys Chem Ref Data 11 [Suppl 2] 2–123

    Google Scholar 

  13. Sana M, Leroy G (1987) J Mol Struct (Theochem) 151:307

    Google Scholar 

  14. Raghavachari K, Schleyer PvR, Spitznagel GW (1983) J Am Chem Soc 105:5917

    Google Scholar 

  15. Schleyer PvR, Kos AJ, Pople JA, Balaban AT (1982) J Am Chem Soc 104:3771; (1983) J Am Chem Soc 105:5258

    Google Scholar 

  16. Pople JA, Tidor B, Schleyer PvR (1982) Chem Phys Lett 88:533

    Google Scholar 

  17. Curtiss LA, Pople JA (1988) J Phys Chem 92:894

    Google Scholar 

  18. Hehre WJ, Random L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  19. Mc Kee ML, Lipscomb WN (1985) Inorg Chem 24:762; Pople JA, Luke BT, Frisch M, Binkley JS (1985) J Phys Chem 89:2198

    Google Scholar 

  20. Chase Jr MW, Davies CA, Downey Jr JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables [Suppl 1] J Phys Chem Ref. Data, vol 14

  21. Lovas FJ (1982) J Phys Chem Ref Data 11:251

    Google Scholar 

  22. Pople JA, Luke BT, Frisch MJ, Binkley JS (1985) J Phys Chem 89:2198; Ho P, Coltrin ME, Binkley JS, Melius CF (1985) J Phys Chem 89:4647; Sana M, Leroy G, Peeters D, Younang E (1987) J Mol Struct (Theochem) 151:325

    Google Scholar 

  23. Sana M (1985) In: Daudel R (ed) Structure and dynamics of molecular systems. Reidel, Dordrecht

    Google Scholar 

  24. Ros = Rosentock HM, Draxl K, Steiner BW, Herron JT (1977) J Phys Chem Ref Data 6:73

    Google Scholar 

  25. Wil67 = Wilson JH McGee Jr HA (1967) J Chem Phys 46:1444

    Google Scholar 

  26. NBS82 = [8]

    Google Scholar 

  27. JANAF85 = [18]

  28. CODATA recommended key values, (1978) J Chem Thermodynamics 10:903

    Google Scholar 

  29. Lia84 = Lias SJ, Liebman JF, Levin RD (1984) J Phys Chem Ref Data 13:695

    Google Scholar 

  30. Bru70 = Brudle CR, Robin MB, Basch H, Pinsky M, Bond A (1970) J Am Chem Soc 92:3863; Rose TL, Frey R, Brehm B (1970) Bull Am Phys Soc 15:430

    Google Scholar 

  31. Gan67 = Ganguli PS, McGee Jr HA (1969) J Chem Phys 50:4658

    Google Scholar 

  32. Wil67 = Wilson JH, McGee Jr HA (1967) J Chem Phys 46:1444

    Google Scholar 

  33. Bau64 = Bauer SH, Herzberg G, Johns JWC (1964) J Mol Spectry 13: 256

    Google Scholar 

  34. Edl77 = Edlén B, Ölme A, Herzberg G, Johns JWC (1970) J Opt Soc Am 60:889

    Google Scholar 

  35. Ruscic B, Mayhew CA, Berkowitz J (1988) J Chem Phys 88:5580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sana, M., Leroy, G. & Henriet, C. Theoretical study of the borane and diborane positive ions. Theoret. Chim. Acta 76, 125–135 (1989). https://doi.org/10.1007/BF00532129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00532129

Key words

Navigation