Skip to main content
Log in

Ti-poor hoegbomite in kornerupine-cordierite-sillimanite rocks from Ellammankovilpatti, Tamil Nadu, India

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Hoegbomite occurs sparingly in minute (mostly 0.1 mm) grains with fine-grained hercynite, magnetite, and rutile in two coarse-grained kornerupine-cordierite-sillimanite rocks from Ellammankovilpatti, Tamil Nadu, India. The hoegbomite is Ti-poor (2.5 wt% TiO2), Fe-rich (25–26% Fe as FeO), and contains 6.2–6.8% MgO, 59.8–60.1% Al2O3, 1.0–1.3% ZnO, 0.3–0.7% Cr2O3 and 0.02% Li2O. Minor amounts (estimated not to exceed 0.2 wt% oxide) of V, Co, Ni, Ga, and Sn were detected on the electron microprobe, but Be, Nb, and Zr were not detected with the ion microprobe mass analyser. Assuming the crystal structure refined by Gatehouse and Grey (1982) to be applicable to the Ellammankovilpatti hoegbomite, the analyses were recalculated on a basis of 22 cations, 30 oxygens, and two hydroxyls, resulting in 49 to 53% of the iron being ferric. Identification of hoegbomite was confirmed by X-ray powder diffraction. Associated cordierite (Fe/(Fe+Mg)=0.14) and kornerupine (Fe/(Fe+Mg)= 0.27) contain 0.02 weight % Li2O and 0.05–0.07% BeO, while only the kornerupine contains B2O3 — 1.57% (ion microprobe analyses). Hoegbomite and the other oxides may have crystallized at temperatures between 680 and 720° C (P≈6.5 kbar) following attainment of peak conditions by the reaction: kornerupine+sillimanite±rutile+ZnO+H2O+O2 =cordierite+chlorite+hercynite+hoegbomite +magnetite+B2O3.

The conditions for hoegbomite formation at Ellammankovilpatti appear to be characteristic of many hoegbomite parageneses. Critical for hoegbomite are silica undersaturation and relatively high oxygen and water activities at fairly high temperatures, conditions which are most commonly attained in later phases of a metamorphic cycle in upper amphibolite- and granulite-facies terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermand D, Lal RK, Raase P, Raith M (1982) Metamorphic conditions in the high-grade terrain of South India: deduced from sapphirine-bearing granulites from Kiranur, Karur (Tamil Nadu). Rev Bras Geociências 12:284–291

    Google Scholar 

  • Ackermand D, Windley BF, Herd RK (1983) Magnesian högbomite in a sapphirine-bearing rock from the Fiskenaesset region, W Greenland. Mineral Mag 47:555–561

    Google Scholar 

  • Amthauer G, Schmetzer K (1978) Mössbauer- und Ligandenfeldspektroskopische Untersuchungen natürlicher Fe-haltiger Kornerupine. Fortschr Mineral 55(Beiheft 1):6–7 (abstract)

    Google Scholar 

  • Angus NS, Middleton R (1985) Compositional variation in högbomites from north Connemara, Ireland. Mineral Mag 49:649–654

    Google Scholar 

  • Annersten H (1968) A mineral chemical study of a metamorphosed iron formation in Northern Sweden. Lithos 1:374–397

    Google Scholar 

  • Armbruster Th, Irouschek A (1983) Cordierities from the Lepontine Alps: Na+Be→Al substitution, gas content, cell parameters, and optics. Contrib Mineral Petrol 82:389–396

    Google Scholar 

  • Balasubrahmanyan MN (1965) Note on kornerupine from Ellammankovilpatti, Madras, India. Mineral Mag 35:662–664

    Google Scholar 

  • Balasubrahmanyan MN (1976) Significance of sapphirine and kornerupine-bearing cordierite rocks from around Kiranur, Tiruchirapalli district, Tamil Nadu. J Geol Soc India 17:158 (abstract)

    Google Scholar 

  • Braun E, Raith M (1985) Fe-Ti-oxides in metamorphic basites from the eastern Alps, Austria: a contribution to the formation of solid solutions of natural Fe-Ti-oxide assemblages. Contrib Mineral Petrol 90:199–213

    Google Scholar 

  • Burt DM (1978) Multisystems analysis of beryllium mineral stabilities: the system BeO-Al2O3-SiO2-H2O. Am Mineral 63:664–676

    Google Scholar 

  • Čech F, Rieder M, Vrána S (1976) Cobaltoan högbomite from Zambia. Neues Jahrb Mineral Monatsh 1976:525–531

    Google Scholar 

  • Černý P, Povondra P (1966) Beryllian cordierite from Věžná: (Na, K)+ Be→Al. Neues Jahrb Mineral Monatsh 1966:36–44

    Google Scholar 

  • Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KA12[AlSi3O10(OH)2], Contrib Mineral Petrol 48:89–114

    Google Scholar 

  • Coolen JJMMM (1981) Högbomite and aluminium spinel from some metamorphic rocks and Fe-Ti ores. Neues Jahrb Mineral Monatsh 1981:374–384

    Google Scholar 

  • Devaraju TC, Uttangi VH, Coolen JJMMM (1981) Högbomite from Fe-Ti deposits of Madangere, Ankola Taluk, Karnataka. J Geol Soc India 22:439–443

    Google Scholar 

  • Ellis DJ, Sheraton JW, England RN, Dallwitz WB (1980) Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica — mineral assemblages and reactions. Contrib Mineral Petrol 72:123–143

    Google Scholar 

  • Evans BW (1964) Fractionation of elements in the pelitic hornfelses of the Cashel-Lough Wheelaun intrusion, Connemara, Eire. Geochim Cosmochim Acta 28:127–156

    Google Scholar 

  • Friedman GM (1952) Study of hoegbomite. Am Mineral 37:600–608

    Google Scholar 

  • Gatehouse BM, Grey IE (1982) The crystal structure of högbomite-8H. Am Mineral 67:373–380

    Google Scholar 

  • Gavelin A (1916) Über Högbomit. Bull Geol Inst Univ Upsala 15:289–316

    Google Scholar 

  • Gordillo CE, Schreyer W, Werding G, Abraham K (1985) Lithium in NaBe-cordierites from El Peñón, Sierra de Córdoba, Argentina. Contrib Mineral Petrol 90:93–101

    Google Scholar 

  • Grew ES (1982) Sapphirine, kornerupine, and sillimanite+orthopyroxene in the charnockitic region of south India. J Geol Soc India 23:469–505

    Google Scholar 

  • Grew ES (1986) Petrogenesis of kornerupine at Waldheim (Sachsen), German Democratic Republic. Z Geol Wiss (in press)

  • Grew ES, Hinthorne JR (1983) Boron in sillimanite. Science 221:547–549

    Google Scholar 

  • Grew ES, Hinthorne JR, Marquez N (1986) Li, Be, B and Sr in margarite and paragonite from Antarctica. Am Mineral 71:1129–1134

    Google Scholar 

  • Grey IE, Gatehouse BM (1979) The crystal structure of nigerite-24R. Am Mineral 64:1255–1264

    Google Scholar 

  • Guidotti CV, Cheney JT, Conatore PD (1975) Coexisting cordierite+biotite+chlorite from the Rumford quadrangle, Maine. Geology 3:147–148

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminum silicate phase diagram. Am J Sci 271:97–131

    Google Scholar 

  • Korzhinskii DS (1959) Physicochemical basis of the analysis of the paragenesis of minerals. Consultants Bureau, New York (English translation)

    Google Scholar 

  • Lal RK, Ackermand D, Raith M, Raase P, Seifert F (1984) Sapphirine-bearing assemblages from Kiranur, southern India: a study of chemographic relationships in the Na2O-FeO-MgO-Al2O3- SiO2-H2O system. Neues Jahrb Mineral Abh 150:121–152

    Google Scholar 

  • McKie D (1963) The högbomite polytypes. Mineral Mag 33:563–580

    Google Scholar 

  • McKie D (1963) The magnesium aluminium borosilicates: kornerupine and grandidierite. Mineral Mag 34:346–357

    Google Scholar 

  • Mancktelow NS (1981) Högbomite of unusual composition from Reedy Creek, South Australia. Mineral Mag 44:91–94

    Google Scholar 

  • Marcotty L-A, Petersen EU, Essene EJ (1982) Iron-rich högbomite and phase equilibria in the system FeO-Al2O3-SiO2-TiO2. Geol Soc Amer Abstracts with Programs 14:556 (abstract)

    Google Scholar 

  • Mielke H, Schreyer W (1972) Magnetite-rutile-assemblages in metapelites of the Fichtelgebirge, Germany. Earth Planet Sci Lett 16:423–428

    Google Scholar 

  • Moleva VA, Myasnikov VS (1952) O khëgbomite i yego raznovidnosti tsink-khëgbomite (Hoegbomite and its variety, zinc-hoegbomite) Doklady Akad Nauk SSSR 53:733–736

    Google Scholar 

  • Moore PB, Araki T (1979) Kornerupine: a detailed crystal-chemical study. Neues Jahrb Mineral Abh 134:317–336

    Google Scholar 

  • Nel HJ (1949) Hoegbomite from the corundum fields of the eastern Transvaal. Mem Geol Surv South Africa 43:1–7

    Google Scholar 

  • Palache C, Berman H, Frondel C (1944) The System of Mineralogy, Vol 1. Elements, sulfides, sulfosalts, oxides. (Seventh Edition). Wiley, New York

    Google Scholar 

  • Peacor DR (1967) New data on nigerite. Am Mineral 52:864–866

    Google Scholar 

  • Raith M, Raase P, Ackermand D, Lal RK (1983) Regional geothermobarometry in the granulite facies terrane of South India. Trans R Soc Edinburgh: Earth Sci 73:221–244

    Google Scholar 

  • Robinson P, Jaffe HW (1969) Aluminous enclaves in gedrite-cordierite gneiss from southwestern New Hampshire. Am J Sci 267:389–421

    Google Scholar 

  • Rossman GR, Grew ES, Dollase WA (1982) The colors of sillimanite. Am Mineral 67:749–761

    Google Scholar 

  • Rumble D III (1970) Thermodynamic analysis of phase equilibria in the system Fe2TiO4-Fe3O4-TiO2. Carnegie Inst Washington Yearb 69:198–207

    Google Scholar 

  • Rumble D III (1976) Oxide minerals in metamorphic rocks, Chapter 3. In: Rumble D III (ed) Oxide Minerals, Vol 3 of Reviews in Mineralogy, p R-1 to R-24, Mineral Soc Am, Washington, DC

    Google Scholar 

  • Schreyer W, Seifert F (1969) Compatibility relations of the aluminum silicates in the systems MgO-Al2O3-SiO2-H2O and K2O-MgO-Al2O3-SiO2-H2O at high pressures. Am J Sci 267:371–388

    Google Scholar 

  • Schreyer W, Horrocks PC, Abraham K (1984) High-magnesium staurolite in a sapphirine-garnet rock from the Limpopo belt, southern Africa. Contrib Mineral Petrol 86:200–207

    Google Scholar 

  • Seifert F (1973) Stability of the assemblage cordierite-corundum in the system MgO-Al2O3-SiO2-H2O. Contrib Mineral Petrol 41:171–178

    Google Scholar 

  • Seifert F (1974) Stability of sapphirine: a study of the aluminous part of the system MgO-Al2O3-SiO2-H2O. J Geol 82:173–204

    Google Scholar 

  • Seifert F (1975) Boron-free kornerupine: a high-pressure phase. Am J Sci 275:57–87

    Google Scholar 

  • Southwick DL (1968) Mineralogy of a rutile- and apatite-bearing ultramafic chlorite rock, Harford County, Maryland. US Geol Surv Prof Pap 600-C:C38-C44

    Google Scholar 

  • Speer JA (1982) Metamorphism of the pelitic rocks of the Snyder Group in the contact aureole of the Kiglapait layered intrusion, Labrador: effects of buffering partial pressure of water. Can J Earth Sci 19:1888–1909

    Google Scholar 

  • Spry PG (1982) An unusual gahnite-forming reaction, Geco basemetal deposit, Manitouwadge, Ontario. Can Mineral 20: 549–553

    Google Scholar 

  • Teale GS (1980) The occurrence of högbomite and taaffeite in a spinel-phlogopite schist from the Mount Painter province of South Australia. Mineral Mag 43:575–577

    Google Scholar 

  • Thompson JB, Jr (1957) The graphical analysis of mineral assemblages in pelitic schists. Am Mineral 42:842–858

    Google Scholar 

  • Vlasov KA (1966) Geochemistry and Mineralogy of Rare Elements and Genetic Types of Their Deposits. Volume II. Mineralogy of Rare Elements. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • White EW, Johnson GG Jr (1979) X-ray emission and absorption edge wavelengths and interchange settings for LiF geared curved crystal spectrometers. Earth and Mineral Sciences Experiment Station. Spec Pub No 1–70. 5th Edn. Penn State Univ, Univ Park Pennsylvania

    Google Scholar 

  • Wilson AF (1977). A zincian högbomite and some other högbomites from the Strangways Range, Central Australia. Mineral Mag 41:337–344

    Google Scholar 

  • Windley BF, Ackermand D, Herd RK (1984) Sapphirine/kornerupine-bearing rocks and crustal uplift history of the Limpopo belt, southern Africa. Contrib Mineral Petrol 86:342–358

    Google Scholar 

  • Woodford PJ, Wilson AF (1976) Sapphirine, högbomite, kornerupine, and surinamite from aluminous granulites, north-eastern Strangways Range, central Australia. Neues Jahrb Mineral Monatsh 1976:15–35

    Google Scholar 

  • Zakrzewski MA (1977) Högbomite from the Fe-Ti deposit of Liganga (Tanzania). Neues Jahrb Mineral Monatsh 1977:373–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grew, E.S., Abraham, K. & Medenbach, O. Ti-poor hoegbomite in kornerupine-cordierite-sillimanite rocks from Ellammankovilpatti, Tamil Nadu, India. Contr. Mineral. and Petrol. 95, 21–31 (1987). https://doi.org/10.1007/BF00518027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00518027

Keywords

Navigation