Skip to main content
Log in

A four-parameter corresponding-states method for prediction of Newtonian, pure-component viscosity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The extended Lee-Kesler (ELK) method, introduced for calculating thermodynamic properties of polar as well as nonpolar fluids and their mixtures, has been adapted to the calculation of Newtonian, pure-fluid viscosity. The method is a four-parameter, corresponding-states technique requiring as input the critical temperature, critical pressure, a size/shape parameter α, and a polar interaction parameter β. Because α and β have been previously tabulated for many fluids (for calculation of thermodynamic properties) and may also be obtained directly from the radius of gyration and a single liquid density, respectively, the method contains no adjustable parameters and is predictive in nature. ELK viscosity predictions were compared to experimental data for nonpolar and polar fluids. For 36 different nonpolar fluids and a total of 5748 different points, the comparison yielded an absolute average deviation (AAD) of 7.88% with a bias of −4.45%. Similarly, the AAD was 10.62% with a bias of −5.34% for a comparison of 15 different polar fluids involving 1500 different points. With this method, viscosities can be calculated within the range 0.55 ⩽T r⩽2.00 and 0<P r⩽10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Lee and M. G. Kesler, AIChE J. 21:510 (1975).

    Google Scholar 

  2. W. V. Wilding and R. L. Rowley, Int. J. Thermophys. 7:525 (1986).

    Google Scholar 

  3. W. V. Wilding, J. K. Johnson, and R. L. Rowley, Int. J. Thermophys. 8:717 (1987).

    Google Scholar 

  4. J. K. Johnson and R. L. Rowley, Fluid Phase Equil. 44:255 (1989).

    Google Scholar 

  5. J. K. Johnson and R. L. Rowley, Int. J. Thermophys. 10:479 (1989).

    Google Scholar 

  6. J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fund. 20:323 (1981).

    Google Scholar 

  7. M. J. Hwang and W. B. Whiting, Ind. Eng. Chem. Res. 26:1758 (1987).

    Google Scholar 

  8. L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables (Hemisphere, New York, 1984).

    Google Scholar 

  9. J. P. Boon, J. C. Legros, and G. Thomaes, Physica 33:547 (1967).

    Google Scholar 

  10. I. F. Golubev, Viscosity of Gases and Gas Mixtures, a Handbook (Israel Program for Scientific Translations, Jerusalem, 1970).

    Google Scholar 

  11. W. M. Haynes, Physica 67:440 (1973); Physica 70:410 (1973).

    Google Scholar 

  12. J. Hellemans, H. Zink, and O. Van Paemel, Physica 46:395 (1970).

    Google Scholar 

  13. E. T. S. Huang, G. W. Swift, and F. Kurata, AIChE J. 12:932 (1966).

    Google Scholar 

  14. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed. (John Wiley and Sons, New York, 1975).

    Google Scholar 

  15. J. A. Jossi, L. I. Stiel, and G. Thodos, AIChE J. 8:59 (1962).

    Google Scholar 

  16. N. A. Agaev and I. F. Golubev, Gazov. Promst. 8:50 (1963).

    Google Scholar 

  17. L. T. Carmichael and B. H. Sage, AIChE J. 12:559 (1966).

    Google Scholar 

  18. J. C. McCoubrey, J. N. McCrea, and A. R. Ubbelohde, J. Chem. Soc. 1961 (1951).

  19. R. M. Melaven and E. Mack, Jr., J. Am. Chem. Soc. 54:888 (1932).

    Google Scholar 

  20. K. J. Okeson, A Four-Parameter Corresponding-States Method for the Prediction of Newtonian, Pure-Component Viscosity, M.S. thesis (Brigham Young University, Provo, Utah, 1989).

    Google Scholar 

  21. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases & Liquids, 4th ed. (McGraw-Hill, New York, 1987).

    Google Scholar 

  22. P. J. Stathis and D. P. Tassios, Ind. Eng. Chem. Process Dev. 24:701 (1985).

    Google Scholar 

  23. L. T. Carmichael and B. H. Sage, J. Chem. Eng. Data 8:94 (1963).

    Google Scholar 

  24. D. D. Diller and J. M. Saber, Physica 108A:143 (1981).

    Google Scholar 

  25. B. E. Eakin, K. E. Starling, J. P. Dolan, and R. T. Ellington, J. Chem. Eng. Data 7:33 (1962).

    Google Scholar 

  26. L. T. Carmichael, V. M. Berry, and B. H. Sage, J. Chem. Eng. Data 6:411 (1964).

    Google Scholar 

  27. L. T. Carmichael and B. H. Sage, J. Chem. Eng. Data 8:612 (1963).

    Google Scholar 

  28. J. P. Dolan, K. E. Starling, A. L. Lee, B. E. Eakin, and R. T. Ellington, J. Chem. Eng. Data 8:396 (1962).

    Google Scholar 

  29. M. H. Gonzalez and A. L. Lee, J. Chem. Eng. Data 11:357 (1966).

    Google Scholar 

  30. N. A. Agaev and I. F. Golubev, Gazov. Promst. 8:45 (1963).

    Google Scholar 

  31. A. L. Lee and R. T. Ellington, J. Chem. Eng. Data 10:101 (1965).

    Google Scholar 

  32. K. Stephan and K. Lucas, Viscosity of Dense Fluids (Plenum Press, New York, 1979).

    Google Scholar 

  33. M. H. Gonzalez and A. L. Lee, J. Chem. Eng. Data 13:66 (1968).

    Google Scholar 

  34. N. A. Agaev and I. F. Golubev, Dokl. Phys. Chem. 151:597 (1963).

    Google Scholar 

  35. Y. L. Rastorguyev and A. S. Keramidi, Fluid Mech. Sov. Res. 3:156 (1974).

    Google Scholar 

  36. L. T. Carmichael, V. M. Berry, and B. H. Sage, J. Chem. Eng. Data 14:27 (1969).

    Google Scholar 

  37. A. L. Lee and R. T. Ellington, J. Chem. Eng. Data 10:346 (1965).

    Google Scholar 

  38. J. M. J. Coremans, A. Van Itterbeek, J. J. M. Beenakker, H. F. P. Knaap, and P. Zandbergen, Physica 24:557 (1958).

    Google Scholar 

  39. W. Herreman and W. Grevendonk, Cryogenics 14:395 (1974).

    Google Scholar 

  40. G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys. 38:154 (1963).

    Google Scholar 

  41. A. Michels, A. Boltzen, and W. Schuurman, Physica 20:1141 (1954).

    Google Scholar 

  42. N. J. Trappeniers, A. Boltzen, J. Van Oosten, and H. R. Van Den Berg, Physica 31:945 (1965).

    Google Scholar 

  43. W. M. Haynes, Physica 76:1 (1974).

    Google Scholar 

  44. A. Michels, A. Boltzen, and W. Schuurman, Physica 23:95 (1957).

    Google Scholar 

  45. L. T. Carmichael, H. H. Reamer, and B. H. Sage, J. Chem. Eng. Data 8:400 (1963).

    Google Scholar 

  46. A. K. Barua, M. Afzal, G. P. Flynn, and J. Ross, J. Chem. Phys. 41:374 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okeson, K.J., Rowley, R.L. A four-parameter corresponding-states method for prediction of Newtonian, pure-component viscosity. Int J Thermophys 12, 119–136 (1991). https://doi.org/10.1007/BF00506126

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00506126

Key words

Navigation