Skip to main content
Log in

Organic liquid thermal conductivity: A prediction method in the reduced temperature range 0.3 to 0.8

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A general correlation for organic liquid thermal conductivity, λ, estimation is proposed of the following type:

$$\lambda = A \cdot \frac{{(1 - T_r )}}{{T_r^{{1 \mathord{\left/ {\vphantom {1 6}} \right. \kern-\nulldelimiterspace} 6}} }}^{0.38}$$

where T r is the reduced temperature and the factor A is practically temperature independent and characteristic of the particular compound investigated. The values of the factor A for 144 organic liquids are calculated (through selected experimental λ data) and are listed. The proposed correlation is tested, and the mean general deviation between calculated and selected experimental λ values is found to be smaller than 2% over wide temperature ranges (generally from T r = 0.3 to T r =0.8); the maximum deviations are normally smaller than 6%. Successively, the compounds are investigated as members of the respective families in order to provide an expression for A by means of the best available physical properties of the liquids. Correlations are proposed (for alcohols, aromatics, esters, refrigerant fluids, paraffins, cycloparaffins, ketones, organic acids, ethers, and olefins) that contain the same reduced temperature dependence evidenced in the above equation and that differ in the expression suggested for the factor A. In this way, the thermal conductivity of the organic liquids can be evaluated, with a mean deviation generally less than 5%, in absence of experimental λ data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Tye, Thermal Conductivity, Vol. 2 (Academic Press, London, 1969).

    Google Scholar 

  2. E. McLaughlin, Chem. Rev. 64:390 (1964).

    Google Scholar 

  3. G. Latini and M. Pacetti, Bull. I.I.F./I.I.R. 6:1 (1977).

    Google Scholar 

  4. C. Baroncini, P. Di Filippo, G. Latini, and M. Pacetti, Int. J. Thermophys. 1:159 (1980).

    Google Scholar 

  5. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3rd ed. (McGraw-Hill, New York, 1977), pp. 518–525.

    Google Scholar 

  6. W. J. Scheffy, Tech. Rept. PR-85-R, Princeton University, Princeton, N.J., pp. 1–99, 1958 (AD 204 891).

    Google Scholar 

  7. W. J. Scheffy and E. F. Johnson, J. Chem. Eng. Data 6:245 (1961).

    Google Scholar 

  8. V. Pachaiyappan and K. R. Vaidyanathan, in Proc. Sixth Symp. Thermophys. Prop., P. E. Liley, ed. (Am. Soc. Mech. Eng., New York, 1973) pp. 15–21.

    Google Scholar 

  9. K. R. Vaidyanathan and M. Velayutham, Chem. Eng. World, IX:69 (1974).

    Google Scholar 

  10. D. S. Viswanath, Am. Inst. Chem. Eng. J. 13:850 (1967).

    Google Scholar 

  11. C. Baroncini, P. Di Filippo, G. Latini, and M. Pacetti, Progress in Refrigeration Science and Technology, Vol. II (I.I.F./I.I.R., Padua, Italy, 1980), pp. 279–284.

    Google Scholar 

  12. C. Baroncini, P. Di Filippo, G. Latini, and M. Pacetti, Memorie presentate al XXXIV Congresso Nazionale A.T.I., Vol. 1 (CO. GRA. S. Centro Stampa Facoltà di Ingegneria, Palermo, Italy, 1979).

    Google Scholar 

  13. C. Baroncini, P. Di Filippo, G. Latini, and M. Pacetti, 7th European Thermophysical Properties Conference, Antwerpen (Belgium), June 30–July 4, 1980.

  14. D. T. Jamieson, J. B. Irving, and J. S. Tudhope, Liquid Thermal Conductivity, A Data Survey to 1973 (Her Majesty's Stationery Office, Edinburgh, 1975).

    Google Scholar 

  15. Y. S. Touloukian, P. E. Liley, and S. C. Saxena, Thermal Conductivity of Nonmetallic Liquids and Gases (Plenum Press, New York, 1970).

    Google Scholar 

  16. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases (John Wiley & Sons, New York, 1975).

    Google Scholar 

  17. ASHRAE Handbook & Product Directory, 1977 Fundamentals (American Society of Heating, Refrigeration, and Air-Conditioning Engineers, New York, 1978).

  18. R. H. Perry and C. H. Chilton, Chemical Engineer's Handbook, 5th ed. (McGraw-Hill, New York 1973).

    Google Scholar 

  19. F. A. Missenard, Rev. Gén. Therm., Fr. 141:751–759 (1973).

    Google Scholar 

  20. C. Baroncini, P. Di Filippo, G. Latini, and M. Pacetti, Memorie del XXXV Congresso Nazionale A.T.I. (CELID, La Grafica Nuova, Turin, Italy, 1980), pp. 217–228.

    Google Scholar 

  21. J. C. Bishop and P. E. Liley, in Proc. Sixth Symp. Thermophys. Prop., P. E. Liley, ed. (Am. Soc. Mech. Eng., New York, 1973).

    Google Scholar 

  22. P. E. Liley, in Proc. Fifth Symp. Thermophys. Prop., C. F. Bonilla, ed. (Am. Soc. Mech. Eng., New York, 1970), pp. 197–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baroncini, C., Di Filippo, P., Latini, G. et al. Organic liquid thermal conductivity: A prediction method in the reduced temperature range 0.3 to 0.8. Int J Thermophys 2, 21–38 (1981). https://doi.org/10.1007/BF00503572

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503572

Key words

Navigation