Skip to main content
Log in

Absolute measurements of the thermal conductivity of alcohols by the transient hot-wire technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New absolute measurements of the thermal conductivity of methanol, ethanol, propanol, butanol, pentanol, and hexanol at atmospheric pressure and in the temperature range 290–350 K are reported. The overall uncertainty in the reported thermal conductivity data is estimated to be better than ±0.5%, an estimate confirmed by the measurement of the thermal conductivity of water. The measurements presented in this paper have been used to develop a consistent theoretically based correlation for the prediction of the thermal conductivity of alcohols. The proposed scheme, based on an extention of the rigid-sphere model, permits the density dependence of the thermal conductivity of alcohols, for temperatures between 290 and 350 K and atmospheric pressure, to be represented successfully by an equation containing just one parameter characteristic of the fluid at each temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1073 (1986).

    Google Scholar 

  2. E. Charitidou, M. Dix, M. J. Assael, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:511 (1987).

    Google Scholar 

  3. M. J. Assael, E. Charitidou, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:663 (1987).

    Google Scholar 

  4. E. Charitidou, Ch. Molidou, and M. J. Assael, Int. J. Thermophys. 9:37 (1988).

    Google Scholar 

  5. M. J. Assael, E. Charitidou, G. P. Georgiadis, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 92:627 (1988).

    Google Scholar 

  6. G. M. Mallan, M. S. Michaelian, and F. J. Lockhart, J. Chem. Eng. Data 17:412 (1972).

    Google Scholar 

  7. R. W. Powell and H. Groot, Int. J. Heat Mass Transfer 15:360 (1972).

    Google Scholar 

  8. I. F. Golubev and T. N. Vasilkovskaya, Teploenergetika 16:77 (1969) (Russian).

    Google Scholar 

  9. Yu. A. Ganiev and Yu. L. Rastorguev, Inzh-fiz. Zh. 15:519 (1968) (Russian).

    Google Scholar 

  10. Yu. L. Rastorguev and V. G. Nemzer, Teploenergetika 15:78 (1968) (Russian).

    Google Scholar 

  11. Yu. L. Rastorguev and Yu. A. Ganiev, Russ. J. Phys. Chem. 41:1557 (1967).

    Google Scholar 

  12. J. E. S. Venart and C. Krishnamurthy, Proceedings 7th Conference on Thermal Conductivity, Gaithesburg, Md., 1967.

    Google Scholar 

  13. A. K. Abas-Zade and R. Dzhamalov, Dokl. Akad. Nauk Azerb. SSR., Ser. Fiz.-Tekhn. i Mat. Nauk 67:22 (1967) (Russian).

    Google Scholar 

  14. A. K. Abas-Zade and A. M. Amiraslanov, Zh. fiz. Khim. 31:1459 (1957) (Russian).

    Google Scholar 

  15. H. Poltz and R. Jugel, Int. J. Heat Mass Transfer 10:1075 (1967).

    Google Scholar 

  16. H. Poltz and R. Jugel, Warme-u Stoffubert. 1:127 (1968) (German).

    Google Scholar 

  17. R. Tufeu, B. Le Neindre, and P. Johannin, C.R. Acad. Sci. Paris 262:229 (1966) (French).

    Google Scholar 

  18. R. Tufeu and B. Le Neindre, Rev. Gen. Therm. 7:365 (1968) (French).

    Google Scholar 

  19. G. Kh. Mukhamedzyanov, A. A. Tarzimanov, and A. G. Usmanov, Izv. vyssh. ucheb. Zaved. Neft' i Gaz. 7:73 (1964) (Russian).

    Google Scholar 

  20. L. P. Filippov, Vestnik Mosk. gos. Univ. Ser. Fiz.-Mat. i Estestven. Nauk 9:45 (1954) (Russian).

    Google Scholar 

  21. L. P. Filippov, Vestnik Mosk. gos. Univ. Ser. 3 Fiz. Astron. 15:61 (1960) (Russian).

    Google Scholar 

  22. F. G. Eldarov, Zh. fiz. Khim. 32:2443 (1958) (Russian).

    Google Scholar 

  23. F. G. Eldarov, Zh. fiz. Khim. 34:1205 (1960) (Russian).

    Google Scholar 

  24. N. B. Vargaftik, Proc. Conf. Thermodyn. Transport Prop. Fluids, London, 1957.

  25. B. C. Sakiadis and J. Coates, A.I.Ch.E. J. 1:275 (1955).

    Google Scholar 

  26. L. Riedel, Chem. Ingr. Tech. 23:321 (1951) (German).

    Google Scholar 

  27. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Properties in Gases (North-Holland, Amsterdam, 1972).

    Google Scholar 

  28. J. H. Dymond and B. J. Alder, J. Chem. Phys. 45:2061 (1966).

    Google Scholar 

  29. S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, High Temp. High Press. 17:241 (1985).

    Google Scholar 

  30. J. Menashe, M. Mustafa, M. Sage, and W. A. Wakeham, Proc. 8th Symp. Thermophys. Prop., Vol. 1, J. V. Sengers, ed. (ASME, New York, 1982), p. 254.

    Google Scholar 

  31. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases (John Willey, New York, 1975).

    Google Scholar 

  32. Y. Nagasaka, H. Okada, J. Suzuki, and A. Nagashima, Ber. Bunsenges. Phys. Chem. 87:859 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assael, M.J., Charitidou, E. & Nieto de Castro, C.A. Absolute measurements of the thermal conductivity of alcohols by the transient hot-wire technique. Int J Thermophys 9, 813–824 (1988). https://doi.org/10.1007/BF00503247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503247

Key words

Navigation