Skip to main content
Log in

Precise determination of the compressibility factor of methane, nitrogen, and their mixtures from refractive index measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We show that the absolute determination of the refractive index, when combined with an expansion technique for obtaining the higher-order coefficients of the Lorentz-Lorenz expansion, leads to precise values of density. A grating interferometer has been developed for the refractive index measurements as a function of pressure. The advantage of a grating interferometer is that it performs a reversible counting and generates a DC compensated signal from the interference fringes. The pressure is also measured with an interferometer, previously calibrated with an oil-type precision piston gauge. For the precise determination of the compressibility factor, the absolute measurement of the refractive index is combined with the differential technique to determine the refractivity virial coefficients of the Lorentz-Lorenz expansion. The compressibility factors of methane, nitrogen, and their mixtures have been determined at 323.15 K for pressures up to 335 bar. The optical method for the determination of the compressibility factor not only is shown to be precise, but also has the ability to produce numerous experimental points in a short time as compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Burnett, J. Appl. Meek Trans. ASME 58:A136 (1936).

    Google Scholar 

  2. R. T. Ellington and B. E. Eakin, Chem. Eng. Prog. 59:80 (1963).

    Google Scholar 

  3. J. M. St-Arnaud and T. K. Bose, Bull. Am. Phys. Soc. 17:68 (1972).

    Google Scholar 

  4. A. D. Buckingham and C. Graham, Proc. R. Soc. Lond. A336:275 (1974).

    Google Scholar 

  5. J. M. St-Arnaud and T. K. Bose, J. Chem. Phys. 65:4854 (1976).

    Google Scholar 

  6. J. M. St-Arnaud and T. K. Bose, J. Chem. Phys. 68:2129 (1978).

    Google Scholar 

  7. J. M. St-Arnaud and T. K. Bose, J. Chem. Phys. 71:4951 (1979).

    Google Scholar 

  8. H. J. Achtermann, R. Scharf, and G. Magnus, VDI-Forsch.-Heft. 619:11 (1983).

    Google Scholar 

  9. H. J. Achtermann, Dissertation (Technische Universität Hannover, Hannover, 1978).

    Google Scholar 

  10. H. J. Achtermann and H. Rögener, Proceedings, 8th Symposium on Thermophysical Properties, Vol. 1, J. V. Sengers, ed. (Am. Soc. Mech. Eng., New York, 1982), p. 142.

    Google Scholar 

  11. H. Rögener and H. J. Achtermann, Wärme-Sloffübertragung 16:57 (1982).

    Google Scholar 

  12. H. J. Achtermann and H. Rögener, Techn. Messen 3:87 (1982).

    Google Scholar 

  13. T. K. Bose, in Collision Induced Absorption, G. Birnbaum, ed. (NATO Series, Plenum, New York, 1985) Series B, 127, p. 49.

    Google Scholar 

  14. H. J. Achtermann, T. K. Bose, M. Jaeschke, and J. M. St-Arnaud, Int. J. Thermophys. 7:357 (1986).

    Google Scholar 

  15. D. R. Douslin, R. H. Harrison, R. T. Moore, and J. P. McCullough, J. Chem. Eng. Data 9:358 (1964).

    Google Scholar 

  16. N. J. Trappeniers, T. Wassenaar, and J. C. Abels, Physica 98A:289 (1979).

    Google Scholar 

  17. R. D. Goodwin, N.B.S. (U.S.) Tech. Note 653 (1974).

  18. R. Kleinrahm and W. Wagner, Chimie-Ing.-Techn. MS 629 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achtermann, H.J., Bose, T.K., Rögener, H. et al. Precise determination of the compressibility factor of methane, nitrogen, and their mixtures from refractive index measurements. Int J Thermophys 7, 709–720 (1986). https://doi.org/10.1007/BF00502402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502402

Key words

Navigation