Skip to main content
Log in

Classification of drugs according to receptor binding profiles

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The affinity for eight different neurotransmitter receptors of about fourty drugs, used for the treatment of various central nervous system disorders, was determined following in vitro receptor binding assays. Our findings indicate that, in spite of widely varying chemical structures and often poorly understood mechanisms of action, the similarities in the “affinity profiles” permit a clinically meaningful classification of these drugs. Such an approach would thus be useful in the assessment of newly synthesized compounds at an early stage of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agid Y, Bonnet AM, Pollak P, Signoret JL, Lhermitte F (1979) Bromocriptine associated with a peripheral dopamine blocking agent in treatment of Parkinson's disease. Lancet 570–572

  • Berde B, Schild HO (1978) Ergot-alkaloids and related compounds, Handb Exp Pharmacol, vol 49. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bevan P, Bradshaw CM, Pun RYK, Slater NT, Szabadi E (1979) The action of microelectrophoretically applied (3,4-dihydroxyphenylamino)-2-imidazoline (DPI) on single cortical neurones. Br J Pharmacol 65:701–706

    Google Scholar 

  • Burt DR, Creese I, Snyder SH (1976b) Binding interactions of lysergic acid diethylamide and related agents with dopamine receptors in brain. Mol Pharmacol 12:631–638

    Google Scholar 

  • Burt DR, Creese I, Snyder SH (1976b) Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors of calf brain membranes. Mol Pharmacol 12:800–812

    Google Scholar 

  • Caron MG, Beaulieu M, Raymond V, Gagné B, Drouin J, Lefkowitz RJ, Labrie F (1978) Dopaminergic receptors in the pituitary gland. Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release. J Biol Chem 253:2244–2253

    Google Scholar 

  • Closse A, Frick W, Hauser D, Sauter A (1980) Characterization of [3H]-bromocriptine binding to calf caudate membranes. In: Yamamura HI, Olsen RW, Usdin E (eds) Psychopharmacology and biochemistry of neurotransmitter receptors, developments in neuroscience, vol 11, Elsevier North Holland, New York Amsterdam Oxford, pp 463–474

    Google Scholar 

  • Closse A, Bolliger G, Dnavid A, Frick W, Hauser D, Pfäffli P, Sauter A, Tobler HJ (1983) Structural modification of the ergopeptine molecule and their differential influence on the affinities to different receptor binding sites, a structure affinity analysis. In: Segawa T, Yamamura HT, Kuriyama K (eds) Molecular pharmacology of neurotransmitter receptors. Raven Press, New York, pp 269–279

    Google Scholar 

  • Creese I, Schneider R, Snyder SH (1977) [3H]Spiroperidol labels dopamine receptors in pituitary and brain. Eur J Pharmacol 46:377–381

    Google Scholar 

  • Creese I (1981) Receptors for psychoactive drugs in the central nervous system. In: Cotman W, Poste G, Nicolson GL (eds) The cell surface and neuronal function. Elsevier/North Holland Biomedical Press, New York Amsterdam Oxford, pp 261–301

    Google Scholar 

  • Creese I (1981) Dopamine receptors. In: Yamamura HI, Enna SJ (eds) Receptors and recognition ser B., vol. 10, Neurotransmitter receptors, part 2, Biogenic amines. Chapman and Hall, London New York, pp 129–183

    Google Scholar 

  • Davis JN, Strittmatter WJ, Hoyler E, Lefkowitz RJ (1977) [3H]Dihydroergocryptine binding in rat brain. Brain Res 132:327–336

    Google Scholar 

  • Deakin JFW, Owen F, Cross AJ, Dashwood MJ (1981) Studies of possible mechanisms of action of electroconvulsive therapy; effects of repeated electrically induced seizures on rat brain receptors for monoamines and other neurotransmitters. Psychopharmacology 73:345–349

    Google Scholar 

  • Dolphin A, Enjalbert A, Tassin JP, Luas M, Bockaert J (1978) Direct interaction of LSD with central “beta”-adrenergic receptors. Life Sci 22:345–351

    Google Scholar 

  • Enna SJ, Kendall DA (1981) Interaction of antidepressants with brain neurotransmitter receptors. J Clin Psychopharmacol 1:(Suppl.) 12–16

    Google Scholar 

  • Enna SJ, Mann E, Kendall D, Stancel GM (1981) Effect of chronic antidepressant administration on brain neurotransmitter receptor binding. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: Neurochemical, behavioral and clinical perspectives. Raven Press, New York, pp 91–105

    Google Scholar 

  • Enz A (1981) Biphasic influence of a 8α-amino ergoline, CU 32-085, on striatal dopamine synthesis and turnover in vivo in the rat. Life Sci 29:2227–2234

    Google Scholar 

  • Fillion GMB, Roussell JC, Fillion MP, Beaudoin DM, Goiny MR, Deniau JM, Jacob JJ (1978) High-affinity binding of [3H]5-hydroxytryptamine to brain synaptosomal membranes: Comparison with [3H]lysergic acid diethylamide binding. Mol Pharmacol 14:50–59

    Google Scholar 

  • Goldstein M, Lew JY, Engel J (1980) Relevance of dopamine receptor binding studies for evaluation of antiparkinsonian drugs. In: Hanin I, Koslow SH (eds) Physico-chemical methodologies in psychiatric research. Raven Press, New York, pp 103–109

    Google Scholar 

  • Green JP, Johnson CL, Weinstein H, Maayani S (1977) Antagonism of histamine activated adenylate cyclase in brain by d-lysergic acid diethylamide. Proc Natl Acad Sci 74:5697–5701

    Google Scholar 

  • Greenberg DA, Snyder SH (1978) Pharmacological properties of [3H]dihydroergocryptine binding sites associated with alphanoradrenergic receptors in rat brain membranes. Mol Pharmacol 14:38–49

    Google Scholar 

  • Haga T, Haga K (1980) Characterization of alpha-adrenergic receptor subtypes in rat brain: estimation of ability of adrenergic ligands to displace [3H]dihydroergocryptine from the receptor subtypes. Life Sci 26:211–218

    Google Scholar 

  • Hall H, Oegren SO (1981) Effect of antidepressant drugs on different receptors in the brain. Eur J Pharmacol 70:393–407

    Google Scholar 

  • Hamblin M, Creese I (1980) Phenoxybenzamine discriminates multiple dopamine receptors. Eur J Pharmacol 65:119–121

    Google Scholar 

  • Hamon M, Mallat M, Herbet A, Nelson DL, Audinot M, Pichat L, Glowinski J (1981) [3H]Metergoline: a new ligand of serotonin receptors in the rat brain. J Neurochem 36:613–626

    Google Scholar 

  • Loew DM, Vigouret JM (1981) Pharmacological approaches to geronto-psychiatry. In: Handbook of experimental pharmacology, vol 55/11. Springer, Berlin Heidelberg New York, pp 435–459

    Google Scholar 

  • Ludin HP, Bass-Verrey F (1976) Study of deterioration in long-term treatment of Parkinsonism with l-DOPA plus decarboxylase inhibitor. J Neural Transm 38:249–258

    Google Scholar 

  • Marsden CD, Parkes JD (1977) Success and problems of long-term levodopa therapy in Parkinson's disease. Lancet 345–349

  • Heyck H (1982) Der Kopfschmerz. Thieme, Stuttgart

    Google Scholar 

  • Parli CJ, Schmidt B, Shaar CJ (1978) Metabolism of lergotrile to 13-hydroxylergotrile, a potent inhibitor of prolactin in vitro. Biochem Pharmacol 27:1405–1408

    Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: Differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16:687–699

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, α-adrenergic and histamine receptors to clinical potency. Am J Psychiat 137:1518–1522

    Google Scholar 

  • Peroutka SJ, Snyder SH (1981) Interactions of antidepressants with neurotransmitter receptor sites. In: Enna SJ, Coyle JT (eds) Antidepressants: Neurochemical, behavioral and clinical perspectives. Raven Press, New York, pp 75–90

    Google Scholar 

  • Ringwald E, Hirt D, Markstein R, Vigouret J-M (1982) Dopaminrezeptoren Stimulatoren in der Behandlung der Parkinsonkrankheit. Nervenarzt 53:67–71

    Google Scholar 

  • Seeman P (1981) Brain dopamine receptors. Pharmacol Rev 32:229–313

    Google Scholar 

  • Stefanini E, Marchisio AM, Devoto P, Vernaleone F, Collu P, Spano PF (1980) Sodium dependent interaction of benzamides with dopamine receptors. Brain Res 198:229–233

    Google Scholar 

  • Struyker-Boudier H, Teppema L, Cools A, van Rossum J (1975) (3,4)Dihydroxyphenylamino)-2-imidazoline (DPI), a new potent agonist at dopamine receptors mediating neuronal inhibition. J Pharmacol 27:882–883

    Google Scholar 

  • Stuetz P, Stadler P, Vigouret JM, Jaton A (1982) Derivate von (5R,8S,10R)-8-Amino-6-methylergolin als zentral wirksame dopaminerge Stimulantien. Eur J Med Chem — Chim Ther 17:537–541

    Google Scholar 

  • Thorner MO, Flückiger E, Calne DB (1980) Bromocriptine, a clinical and pharmacological review. Raven Press, New York

    Google Scholar 

  • Titeler M, Weinreich P, Seeman P (1977) New detection of brain dopamine receptors with [3H]dihydroergocrytpine. Proc Natl Acad Sci 74:3750–3755

    Google Scholar 

  • Tran VT, Chang RSL, Snyder SH (1978) Histamine-H1 receptor identified in mammalian brain membranes with [3H]mepyramine. Proc Natl Acad Sci 75:6290–6294

    Google Scholar 

  • U'Prichard DC, Greenberg DA, Snyder SH (1977a) Binding characteristics of a radiolabelled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol 13:454–473

    Google Scholar 

  • Wastek GJ, Yamamura HI (1978) Biochemical characterization of the muscarinic cholinergic receptor in human brain: alterations in Hungtington's disease (slightly varied). Mol Pharmacol 14:768–780

    Google Scholar 

  • Williams LT, Lefkowitz RJ (1976) Alpha-adrenergic receptor identification by [3H]dihydroergocriptine binding. Science 192:791–793

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Closse, A., Frick, W., Dravid, A. et al. Classification of drugs according to receptor binding profiles. Naunyn-Schmiedeberg's Arch. Pharmacol. 327, 95–101 (1984). https://doi.org/10.1007/BF00500901

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500901

Key words

Navigation