Skip to main content
Log in

Corresponding-states data correlations and molten salts viscosities

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Transport properties of molten salts are encountered in a broad range of R&D tasks, particularly in areas of high-temperature thermal energy storage and in advanced battery concepts. This communication examines a semiempirical corresponding-states correlation as a predictive method using molten salts viscosities. Predictive calculations with molten NaCl and KNO3 as model systems, and with calibration quality data sets as the reference base, are used to evaluate this method. While the proper slope for the temperature dependence is “forecast,” the quality of the predicted data depend directly on the accuracy level of the one experimental value that is the seed for the calculations. Some results are described to show how such calculatins have proved useful in guiding value judgments in studies of the viscosity data in the open scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Pitzer, J. Chem. Phys. 7:583 (1939).

    Google Scholar 

  2. S. A. Rice and J. G. Kirkwood, J. Chem. Phys. 31:901 (1959).

    Google Scholar 

  3. E. Helfand and S. A. Rice, J. Chem. Phys. 32:1642 (1960).

    Google Scholar 

  4. H. Renon, C. A. Eckert, and J. M. Prausnitz, Ind. Eng. Chem. Fund. 6:52 (1967).

    Google Scholar 

  5. L. W. Flynn and G. Thodos, J. Chem. Eng. Data 6:457 (1961).

    Google Scholar 

  6. T. H. Chung, L. L. Lee, and K. E. Starling, Int. J. Thermophys. 1:397 (1980).

    Google Scholar 

  7. H. Reiss, S. W. Mayer, and J. L. Katz, J. Chem. Phys. 35:820 (1963).

    Google Scholar 

  8. Y. Abe and A. Nagashima, Submitted for publication (1980).

  9. M. L. Huggins and J. E. Mayer, J. Chem. Phys. 1:644 (1933).

    Google Scholar 

  10. M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25:45 (1964).

    Google Scholar 

  11. R. E. Young and J. P. O'Connell, Ind. Eng. Chem. Fund. 10:418 (1971).

    Google Scholar 

  12. G. J. Janz, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, NSRDS-NBS 15:1 (1968).

    Google Scholar 

  13. G. J. Janz, G. R. Lakshiminarayanan, R. P. T. Tomkins, and J. Wong, NSRDS-NBS 28:49 (1969).

    Google Scholar 

  14. G. J. Janz, U. Krebs, H. R. Siegenthaler, and R. P. T. Tomkins, J. Phys. Chem. Ref. Data 1:581 (1972).

    Google Scholar 

  15. G. J. Janz, G. L. Gardner, U. Krebs, and R. P. T. Tomkins, J. Phys. Chem. Ref. Data 3:1 (1974).

    Google Scholar 

  16. G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey, G. L. Gardner, U. Krebs, and S. K. Singer, J. Phys. Chem. Ref. Data 4:871 (1975).

    Google Scholar 

  17. G. J. Janz, C. B. Allen, J. R. Downey, S. K. Singer, and R. P. T. Tomkins, J. Phys. Chem. Ref. Data 6:409 (1977).

    Google Scholar 

  18. G. J. Janz, C. B. Allen, S. K. Singer, and R. P. T. Tomkins, J. Phys. Ref. Data 8:125 (1979).

    Google Scholar 

  19. G. J. Janz and R. P. T. Tomkins, J. Phys. Chem. Ref. Data 9:831 (1980).

    Google Scholar 

  20. G. J. Janz and R. P. T. Tomkins, J. Phys. Chem. Ref. Data 12:591 (1983).

    Google Scholar 

  21. G. J. Janz, J. Phys. Chem. Ref. Data 17 (in press) (1988).

  22. G. J. Janz, J. Phys. Chem. Ref. Data 9:791 (1980).

    Google Scholar 

  23. E. Donth, Physica 32:913 (1966).

    Google Scholar 

  24. K. Torklep and H. A. Oye, J. Phys. E. Sci. Instr. 12:875 (1979).

    Google Scholar 

  25. W. Brockner, K. Torklep, and H. A. Oye, J. Chem. Eng. Data 26:250 (1981).

    Google Scholar 

  26. T. Ejima, K. Shimakage, Y. Sato, H. Okuda, N. Kumada, and A. Tshigaki, J. Chem. Soc. (Jap.) 6:961 (1982).

    Google Scholar 

  27. W. Brockner, K. Torklep, and H. A. Oye, J. Chem. Eng. Data 27:387 (1982).

    Google Scholar 

  28. G. V. Vorobev, S. V. Karpachev, and S. F. Palguev, Izv. Sek. Fiz. Khim. Anal. Obsch. Neorg. Khim. Akad. Nauk. SSSR 26:164 (1965).

    Google Scholar 

  29. T. Ejima, Y. Sato, S. Yaegashi, and T. Kijima, Proc. Molten Salt Chem. (Jap.) 17:29 (1984).

    Google Scholar 

  30. T. Ejima and Y. Sato, Submitted for publication (1987).

  31. G. J. Janz and F. Saegusa, J. Electrochem. Soc. 110:452 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janz, G.J., Yamamura, T. & Hansen, M.D. Corresponding-states data correlations and molten salts viscosities. Int J Thermophys 10, 159–171 (1989). https://doi.org/10.1007/BF00500716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500716

Key words

Navigation