Skip to main content
Log in

Contrasting patterns of geographic variation in the cosmopolitan sibling species Drosophila melanogaster and Drosophila simulans

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

An electrophoretic study was carried out to compare the geographic pattern of genetic variation in Drosophila simulans with that of its sibling species, Drosophila melanogaster. An identical set of 32 gene-protein loci was studied in four geographically distant populations of D. simulans and two populations of D. melanogaster, all originating from Europe and Africa. The comparison yielded the following results: (1) tropical populations of D. simulans were, in terms of the number of unique alleles, average heterozygosity per locus, and percentage of loci polymorphic, more variable than conspecific-temperate populations; (2) some loci in both species showed interpopulation differences in allele frequencies that suggest latitudinal clines; and (3) temperate-tropical genetic differentiation between populations was much less in D. simulans than in D. melanogaster. Similar differences between these two species have previously been shown for chromosomal, quantitative, physiological, and middle-repetitive DNA variation. Estimates of N m (number of migrants per generation) from the spatial distribution of rare alleles suggest that both species have similar levels of interpopulation gene flow. These observations lead us to propose two competing hypotheses: the low level of geographic differentiation in D. simulans is due to its evolutionarily recent worldwide colonization and, alternatively, D. simulans has a narrower niche than D. melanogaster. Geographic variation data on different genetic elements (e.g., mitochondrial DNA, two-dimensional proteins, etc.) are required before these hypotheses can be adequately tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, P. R., and Oakeshott, J. G. (1984). Parallel geographical patterns of allozyme variation in two sibling Drosophila species. Nature 308729.

    Google Scholar 

  • Ashburner, M., and Lemeunier, F. (1976). Relationship within the melanogaster species subgroup of the genus Drosophila (sophophora). I. Inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proc. R. Soc. Lond. B. 193137.

    Google Scholar 

  • Baba Aissa, F., and Solignac, M. (1984). La plupart des populations de Drosophila simulans ont probablement pour ancetre une femelle unique dans un passe recent. C.R. Acad. Sci. Paris 299289.

    Google Scholar 

  • Baker, H. G. (1965). Characteristics and modes of origin of weeds. In Baker, H. G., and Stebbins, G. L. (eds.), The Genetics of Colonizing Species Academic Press, New York, pp. 147–172.

    Google Scholar 

  • Berger, E. M. (1970). A comparison of gene-enzyme variation between Drosophila melanogaster and D. simulans. Genetics 66677.

    Google Scholar 

  • Bregliano, J. C., and Kidwell, M. (1983). Hybrid dysgenesis determinants. In Shapiro, J. A. (ed.), Mobile Genetic Elements Academic Press, New York, p. 396.

    Google Scholar 

  • Brookfield, J. F. Y., Montgomery, E., and Langley, C. H. (1984). Apparent absence of transposable element related to the P elements of D. melanogaster in other species of Drosophila. Nature 310330.

    Google Scholar 

  • Cabrera, V. M., Gonalez, A. M., Larruga, J. H., and Gullón, A. (1982). Electrophoretic variability in natural populations of Drosophila melanogaster and Drosophila simulans. Genetica 59191.

    Google Scholar 

  • Choudhary, M., and Singh, R. S. (1987). Historical effective size and the level of genetic diversity in Drosophila melanogaster and Drosophila pseudoobscura. Biochem. Genet. 2541.

    Google Scholar 

  • David, J. R., and Boequet, C. (1975). Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature 257588.

    Google Scholar 

  • David, J. R., and Tsacas, J. (1981). Cosmopolitan, subcosmopolitan and widespread species: Different strategies within the Drosophila family. C.R. Soc. Biogeog. 5711.

    Google Scholar 

  • David, J. R., Louis, J., McKenzie, J. A., Rocha-pite, M., and Vouidibio, J. (1984). Comparative demography of the cosmopolitan sibling species, Drosophila melanogaster and D. simulans, under temperate and tropical climate. Ann. Soc. Entomol. Fr. 20(2):135.

    Google Scholar 

  • Dowsett, A. P., and Young, M. W. (1982). Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc. Natl. Acad. Sci. USA 794570.

    Google Scholar 

  • Eisses, K. T., van Dijk, H., and van Delden, W. (1979). Genetic differentiation within the melanogaster species group of the genus Drosophila (sophophora). Evolution 331063.

    Google Scholar 

  • Green, M. M. (1976). Mutable and mutator loci. In Ashburner, M., and Novistsky, E. (eds.), The Genetics and Biology of Drosophila, Vol. 1(b) Academic Press, New York, pp. 929–944.

    Google Scholar 

  • Gonzalez, A. M., Cabrera, V. M., Larruga, J. M., and Gullón, A. (1982). Genetic distance in the sibling species Drosophila melanogaster, Drosophila simulans, and Drosophila mauritiana. Evolution 36(3):517.

    Google Scholar 

  • Hale, L. R., and Singh, R. S. (1985). Mitochondrial DNA variation in natural populations of Drosophila melanogaster and D. simulans. Genetics 110:s42.

  • Harris, H., and Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.

    Google Scholar 

  • Hyytia, P., David, J. R., Capy, P., and Singh, R. S. (1985). Enzymatic and quantitative variation in European and African populations of Drosophila simulans. Heredity 54209.

    Google Scholar 

  • Kojima, K., Gillespie, J., and Tobari, Y. N. (1970). A profile of Drosophila enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities and linkage disequilibrium in glucose metabolizing systems and some other enzymes. Biochem. Genet. 4627.

    Google Scholar 

  • Lemeunier, F., David, J. R., Tsacas, L., and Ashburner, M. (1985). The Drosophila melanogaster species group. In Ashburner, M., Carson, H. L., and Thompson, J. N., Jr. (eds.), The Genetics and Biology of Drosophila, Vol. 3(e) Academic Press, New York.

    Google Scholar 

  • Levitan, M., and Williamson, D. L. (1965). Evidence for the cytoplasmic and possibly episomal nature of a chromosome breaker. Genetics 52456.

    Google Scholar 

  • Nei, M. (1975). Molecular Population Genetics and Evolution American Elsevier, New York.

    Google Scholar 

  • Nei, M., Muruyama, T., and Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution 291.

    Google Scholar 

  • O'Brien, S. J., and McIntyre, R. J. (1969). An analysis of gene-enzyme variability in natural populations of Drosophila melanogaster and D. simulans. Am. Nat. 10397.

    Google Scholar 

  • Onishi, S., Leigh Brown, A. J., Voelker, R. A., and Langley, C. H. (1982). Estimation of genetic variability in natural populations of Drosophila simulans by two-dimensional and starch gel electrophoresis. Genetics 100127.

    Google Scholar 

  • Parsons, P. A. (1973). Genetics of resistance to environmental stresses in Drosophila populations. Annu. Rev. Genet. 7239.

    Google Scholar 

  • Parsons, P. A. (1975). The comparative evolutionary biology of the sibling species, Drosophila melanogaster and D. simulans. Q. Rev. Biol. 50151.

    Google Scholar 

  • Parsons, P. A. (1977). Resistance to cold temperature stress in populations of Drosophila melanogaster and D. simulans. Aust. J. Zool. 25693.

    Google Scholar 

  • Parsons, P. A. (1979). Resistance of the sibling species Drosophila melanogaster and D. simulans to high temperatures in relation to humidity: Evolutionary implications. Evolution 33131.

    Google Scholar 

  • Parsons, P. A. (1980). Adaptive strategies in natural populations of Drosophila. Theory. Appl. Genet. 57257.

    Google Scholar 

  • Parsons, P. A., and Stanley, S. M. (1980). Domesticated and widespread species. In Ashburner, M., Carson, H. L., and Thompson, J. N. (eds.), The Genetics and Biology of Drosophila, Vol. 3(a), Academic Press, New York, pp. 349–393.

    Google Scholar 

  • Parsons, P. A. (1983). The Evolutionary Biology of Colonizing Species Cambridge University Press, Cambridge.

    Google Scholar 

  • Patterson, J. T., and Stone, W. S. (1952). Evolution in the Genus Drosophila, Macmillan, New York.

    Google Scholar 

  • Singh, R. S., and Rhomberg, L. R. (1987a). A comprehensive study of genic variation in natural populations of Drosophila melanogaster. I. Estimates of gene flow from rare alleles. Genetics (in press).

  • Singh, R. S., and Rhomberg, L. R. (1987b). A comprehensive study of genic variation in natural populations of Drosophila melanogaster. II. Estimates of heterozygosity and causes of geographic differentiation. Genetics (in press).

  • Singh, R. S., Hickey, D. A., and David, J. R. (1982). Genetic differentiation between geographically distant populations of Drosophila melanogaster. Genetics 101235.

    Google Scholar 

  • Slatkin, M. (1985). Rare alleles as indicators of gene flow. Evolution 39(1):53.

    Google Scholar 

  • Steiner, W. W. M. (1977). Niche width and genetic variation in Hawaiian Drosophila. Am. Nat. 1111037.

    Google Scholar 

  • Steiner, W. W. M. (1980). On niche width and genetic variation, parametrical problems, and gene pool differentiation in Drosophila. Am. Nat. 115596.

    Google Scholar 

  • Steiner, W. W. M., Sung, K. C., and Paik, Y. K. (1976). Electrophoretic variability in island populations of Drosophila simulans and Drosophila immigrans. Biochem. Genet. 14495.

    Google Scholar 

  • Triantaphyllidis, C. D., Panourgias, J. N., Scouras, Z. G., and Ioannidis, G. C. (1980). Comparison of gene-enzyme variation between Drosophila melanogaster and D. simulans. Genetica 51227.

    Google Scholar 

  • Triantaphyllidis, C. D., Scouras, Z. G., Panourgias, J. N., and Ioannidis, G. C. (1982). Allozyme variation in Greek wild populations of Drosophila melanogaster and D. simulans along a north-south gradient. Genetica 58129.

    Google Scholar 

  • Van Valen, L. (1965). Morphological variation and the width of the ecological niche. Am. Nat. 99377.

    Google Scholar 

  • Voelker, R. A. (1974). the genetics and cytology of a mutator factor in Drosophila melanogaster. Mutat. Res. 22265.

    Google Scholar 

  • Woodruff, R. C., and Ashburner, M. (1978). The frequency of X-ray induced chromosome breakage in the sibling species Drosophila melanogaster and D. simulans Am. Nat. 12456.

    Google Scholar 

  • Yamaguchi, O., and Mukai, T. (1974). Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosome of Drosophila melanogaster. Genetics 781209.

    Google Scholar 

  • Yamaguchi, O., Cardellino, R. A., and Mukai, T. (1976). High rates of occurrence of spontaneous chromosome aberrations in D. melanogaster. Genetics 83409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank the Natural Science and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.S., Choudhary, M. & David, J.R. Contrasting patterns of geographic variation in the cosmopolitan sibling species Drosophila melanogaster and Drosophila simulans . Biochem Genet 25, 27–40 (1987). https://doi.org/10.1007/BF00498949

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00498949

Key words

Navigation