Skip to main content
Log in

The time course of development of acetylcholinesterase and choline acetyltransferase in Drosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Twenty stages in the life cycle of Canton-S, a normal strain of Drosophila melanogaster, were investigated for protein content and the activities of choline acetyltransferase and acetylcholinesterase, enzymes associated with the metabolism of acetylcholine. The maximum protein content is reached at the prepupal stage. Specific activities of choline acetyltransferase and acetylcholinesterase were high in the larval stages and again in the mature fly. The activities of these enzymes expressed on a per fly basis were compared with the activities of other enzymes, previously published by other workers, expressed on the same basis. The developmental pattern of acetylcholinesterase and choline acetyltransferase differed from the patterns exhibited by the other enzymes described earlier. It was possible to relate the different enzyme patterns to known changes occurring in the life cycle of Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beadle, G. W. (1945). Biochemical genetics. Chem. Rev. 37 15.

    Google Scholar 

  • Beckman, L., and Johnson, F. M. (1964). Genetic control of aminopeptidases in Drosophila melanogaster. Hereditas 51 221.

    Google Scholar 

  • Benzer, S. (1967). Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl. Acad. Sci. 58 1112.

    Google Scholar 

  • Church, R. B., and Robertson, F. W. (1966). A biochemical study of the growth of Drosophila melanogaster. J. Exptl. Zool. 162 337.

    Google Scholar 

  • Colhoun, E. H. (1958). Distribution of choline acetylase in insect conductive tissue. Nature 182 1378.

    Google Scholar 

  • Demerec, M., and Kaufman, B. P. (1967). Drosophila Guide, Introduction to the Genetics and Cytology of Drosophila melanogaster, Carnegie Inst. Wash. Publ., Washington, D.C.

    Google Scholar 

  • Goldberg, A. M., Kaita, A. A., and McCaman, R. E. (1969). Microdetermination of choline acetyltransferase—A comparison of reinecke vs. periodide precipitation. J. Neurochem. 16 823.

    Google Scholar 

  • Kaplan, W. D., and Trout, W. E., III (1969). The behavior of four neurological mutants of Drosophila. Genetics 61 399.

    Google Scholar 

  • Kikkawa, H. (1968). Biochemical genetics of proteolytic enzymes in Drosophila melanogaster. I. General considerations. Japan J. Genet. 43 137.

    Google Scholar 

  • Lewis, E. B. (1960). A new standard food medium. Drosophila Information Service 34 117.

    Google Scholar 

  • Lowry, O. H. Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193 265.

    Google Scholar 

  • McCaman, M. W., Tomey, L. R., and McCaman, R. E. (1968). Radiomimetric assay of acetylcholinesterase activity in submicrogram amounts of tissue. Life Sci. 7 233.

    Google Scholar 

  • McCaman, R. E., and Hunt, J. M. (1965). Microdetermination of choline acetylase in nervous tissue. J. Neurochem. 12 253.

    Google Scholar 

  • McCaman, R. E., Rodriguez de Lores Arnaiz, G., and De Robertis, E. (1965). Species differences in subcellular distribution of choline acetylase in the CNS. J. Neurochem. 12 927.

    Google Scholar 

  • Metcalf, R. L., and March, R. B. (1950). Properties of acetylcholine esterases from the bee, the fly and mouse and their relation to insecticide action. J. Econ. Entomol. 43 670.

    Google Scholar 

  • Roeder, K. D. (1948). The effect of anticholinesterases and related substances on nervous activity in the cockroach. Johns Hopkins Hosp. Bull. 83 587.

    Google Scholar 

  • Schneiderman, H., Young, W. J., and Childs, B. (1966). Patterns of alkaline phosphatase in developing Drosophilac. Science 151 461.

    Google Scholar 

  • Twarog, B. M., and Roeder, K. D. (1957). Pharmacological observations on the desheathed last abdominal ganglion of the cockroach. Ann. Entomol. Soc. Am. 50 231.

    Google Scholar 

  • Ungar, G., and Irwin, L. N. (1968). In Ehrenpreis, S., and Solnitzky, O. C. (eds.), Neurosciences Research, Academic Press, New York, p. 73.

    Google Scholar 

  • Ursprung, H., Smith, K. D., Sofer, W. H., and Sullivan, D. T. (1968).Assay systems for the study of gene function. Science 160 1075.

    Google Scholar 

  • Waldner-Stiefelmeier, R. D. (1967). Untersuchungen über die Proteasen im Wildtyp und in den Letalmutanten (lme and ltr) von Drosophila melanogaster. Z. Vergleich. Physiol. 56 268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the National Multiple Sclerosis Society (347), and from the National Institutes of Health (FR 05471; NB 08864 and NB 08014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewhurst, S.A., McCaman, R.E. & Kaplan, W.D. The time course of development of acetylcholinesterase and choline acetyltransferase in Drosophila melanogaster . Biochem Genet 4, 499–508 (1970). https://doi.org/10.1007/BF00486600

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486600

Keywords

Navigation