Skip to main content
Log in

Isozyme genotype-environment relationships in natural populations of the harvester ant, Pogonomyrmex barbatus, from Texas

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Three different allelic isozyme systems (two esterases, ESH and ESR, and a malic dehydrogenase, MDH) were analyzed in population samples of a species of ant, Pogonomyrmex barbatus, from Texas. Allelic frequencies were determined for several collection localities, and a number of significant differences were found. Principal component analysis was used to compare the patterns of variability of the allelic frequencies with environmental factors. Significant correlation was particularly evident with respect to weather and the pattern of variability in both esterases, and it is therefore suspected that natural selection is important in determining the allele frequency patterns. Observed and expected genotypic proportions were found in good agreement, generally, but in some localities homozygotes appeared in significantly greater numbers than expected. Heterotic selective maintenance was thus not indicated. Correlation found between patterns of variability in the enzyme systems themselves was consistent with the hypothesis that all three enzyme systems were affected by the environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burns, J. M., and Johnson, F. M. (1967). Esterase polymorphism in natural populations of a sulfur butterfly, Colias eurytheme. Science 156 93.

    Google Scholar 

  • Cavalli-Sforza, L. L., and Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. Evolution 21 550.

    Google Scholar 

  • Crow, J. F. (1968). The cost of evolution and genetic loads. In Dronamraju, K. R. (ed.), Haldane and Modern Biology, Johns Hopkins, Baltimore, Md.

    Google Scholar 

  • Hubby, J. L., and Lewontin, R. C. (1966). A molecular approach to the study of genic heterozygosity. Genetics 54 577.

    Google Scholar 

  • Johnson, F. M., and Burns, J. M. (1966). Electrophoretic variation in esterases of Colias eurytheme (Pieridae). J. Lepidopterists' Soc. 20 207.

    Google Scholar 

  • Johnson, F. M., Kanapi, C. G., Richardson, R. H., Wheeler, M. R., and Stone, W. S. (1966). An analysis of polymorphisms among isozyme loci in dark and light Drosophila ananassae strains from American and Western Samoa. Proc. Natl. Acad. Sci. 56 119.

    Google Scholar 

  • Johnson, F. M., Richardson, R. H., and Kambysellis, M. P. (1968). Isozyme variability in species of the genus Drosophila. III. Qualitative comparison of the esterases of D. aldrichi and D. mulleri. Biochem. Genet. 1 239.

    Google Scholar 

  • Kendall, M. G. (1957). A Course in Multivariate Analysis, Charles Griffin and Company Limited, London.

    Google Scholar 

  • King, J. L. (1967). Continuously distributed factors affecting fitness. Genetics 55 483.

    Google Scholar 

  • Kojima, K., and Yarbrough, K. M. (1967). Frequency dependent selection at the Esterase-6 locus in Drosophila melanogaster. Proc. Natl. Acad. Sci. 57 645.

    Google Scholar 

  • Levene, H., and Dobzhansky, T. (1958). New evidence of heterosis in naturally occurring inversion heterozygotes in Drosophila pseudoobscura. Heredity 12 37.

    Google Scholar 

  • Lewontin, R. C., and Hubby, J. L. (1966). A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54 595.

    Google Scholar 

  • Milkman, R. D. (1967). Heterosis as a major cause of heterozygosity in nature. Genetics 55 493.

    Google Scholar 

  • Morrison, D. F. (1967). Multivariate Statistical Methods, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Poulik, M. D. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature 180 1477.

    Google Scholar 

  • Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankya, Sect. A. 26 329.

    Google Scholar 

  • Rockwood, E. S. (1969). Enzyme variation in natural populations of Drosophila mimica. Univ. Texas Publ. (in press).

  • Semeonoff, R., and Robertson, F. W. (1968). A biochemical and ecological study of plasma esterase polymorphism in natural populations of the field vole, Microtus agrestis L. Biochem. Genet. 1 205.

    Google Scholar 

  • Shaw, C. R. (1965). Electrophoretic variation in enzymes. Science 149 936.

    Google Scholar 

  • Stone, W. S., Wheeler, M. R., Johnson, F. M., and Kojima, K. (1968). Genetic variation in natural island populations of members of the Drosophila nasuta and Drosophila ananassae subgroups. Proc. Natl. Acad. Sci. 59 102.

    Google Scholar 

  • Stone, W. S., Kojima, K., and Johnson, F. M. (1969). Enzyme polymorphism in animal populations. Japan. J. Genet. (in press). [Abstract in Proc. XII Intern. Congr. Genetics II: 153 (1968).]

  • Sved, J. A., Reed, T. E., and Bodmer, W. F. (1967). The number of balanced polymorphisms that can be maintained in a natural population. Genetics 55 469.

    Google Scholar 

  • Texas Almanac and State Industrial Guide 1968–1969. (Pub. 1967). A. H. Belo Corp., Dallas, Texas.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by USPHS Research Grants No. GM 15769, GM 11609, and GM 11546 and Texas A & I University Faculty Research Grant No. 449-N-68. The field work and laboratory analyses in this investigation were done while the senior author was at the University of Texas, and the data were analyzed at North Carolina State University. The computing was supported by Grant FR-00011 of the National Institutes of Health. Paper number 2784 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, F.M., Schaffer, H.E., Gillaspy, J.E. et al. Isozyme genotype-environment relationships in natural populations of the harvester ant, Pogonomyrmex barbatus, from Texas. Biochem Genet 3, 429–450 (1969). https://doi.org/10.1007/BF00485604

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00485604

Keywords

Navigation