Skip to main content
Log in

Carboxylesterase-2 in the development of the loach (Misgurnus fossilis L.)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two esterases splitting α-naphthylacetate have been found in the tissues of adult loaches and in embryos. These were identified as arylesterase (E-1) (arylester hydrolase, E.C. 3.1.1.2) and carboxylesterase (E-2) (carboxylic ester hydrolase, E.C. 3.1.1.1.). In unfertilized loach eggs E-1 and E-2 synthesized during oogenesis were found. Active E-2 synthesized under the control of E-2 genes of the embryo appeared in embryos from the stage of 40–50 h of development. Maternal E-2 molecules synthesized in oogenesis or on the stored templates in embryogenesis persisted in larvae up to days 5–6 of development. Two genes controlling the synthesis of two forms of E-2 differing in electric mobility were found in the loach population from the delta of the Danube. The genes for fast and slow E-2 were shown to segregate in meiosis and to be allelic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamford, T., and Harris, H. (1964). Studies on “usual” and “atypical” serum cholinesterases. Am. J. Hum. Genet. 27417.

    Google Scholar 

  • Champion, M. J., and Whitt, G. S. (1976). Differential gene expression in multilocus isozyme systems of the developing green sunfish. J. Exp. Zool. 196263.

    Google Scholar 

  • Davis, B. J. (1964). Disc electrophoresis. II Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121404.

    Google Scholar 

  • Holmes, R. S., and Masters, C. J. (1967). The developmental multiplicity and isozyme status of avian esterases. Biochim. Biophys. Acta. 132379.

    Google Scholar 

  • Holmes, R. S., and Whitt, G. S. (1970). Developmental genetics of the esterase isozymes of Fundulus heteroclitus. Biochem. Genet. 4471.

    Google Scholar 

  • Kirpichnikov, V. S. (1973). Biochemical polymorphism and microevolution processes in fishes. In Biochemical Genetics of Fishes Leningrad, USSR, pp. 7–23.

    Google Scholar 

  • Korochkin, L. (1975). Genetic control and developmental expression of esterases in Drosophila of the virilis group. In Isozymes, Vol. 3, Academic Press, New York, p. 99.

    Google Scholar 

  • Korochkin, L., and Matveeva, N. (1974). Genetics of esterases in Drosophila. II. Sequential expression of paternal and maternal esterases in ontogenesis. Biochem. Genet. 121.

    Google Scholar 

  • Korochkin, L., Matveeva, N., Evgeniev, M., and Golubovsky, M. (1973). Genetics of esterases in Drosophila of the virilis group. I. Characteristics of esterase patterns in D. virilis, D. texana, D. littoralis and their hybrids. Biochem. Genet. 10363.

    Google Scholar 

  • Korochkin, L., Aronshtam, A., and Matveeva, N. (1974). Genetics of esterases in Drosophila. III. Influence of different chromosomes on esterase pattern in Drosophila. Biochem. Genet. 129.

    Google Scholar 

  • Kostomarova, A. A., and Neyfakh, A. A. (1964). The method of separation of blastoderm in embryos of loach and its possible application. Zh. Obsch. Biol., USSR 25386.

    Google Scholar 

  • Kunina, I. M., Marshak, T. L., and Timofeeva, M. Ya. (1975). Determination of the optimum conditions of physical and chemical nuclear inactivation for obtaining haploid and anuclear embryos in the loach Misgurnus fossilis (L.). Ontogenesis (USSR) 6304.

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. F. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.

    Google Scholar 

  • Metcalf, R. A., Whitt, G. S., and Childers, W. F. (1972a). Inheritance of esterases in the white crappie (Pomoxis annularis), black crappie (P. nigromaculatus), and their F1 and F2 interspecific hybrids. Anim. Blood Grps. Biochem. Genet. 319.

    Google Scholar 

  • Metcalf, R. A., Whitt, G. S., Childers, W. F., and Metcalf, R. L. (1972b). A comparative analysis of the tissue esterases of the white crappie (Pomoxis annularis Rafinesque) and black crappie (Pomoxis nigromaculatus Lesueur) by electrophoresis and selective inhibitors. Comp. biochem. physiol. 41B27.

    Google Scholar 

  • Neyfakh, A.A. (1959). Application of the method of nuclear inactivation under the radiation effect for studying the role of nuclei in the early development of fishes. J. Obshch. Biol. USSR 20202.

    Google Scholar 

  • Ornstein, L. (1964). Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci. 121321.

    Google Scholar 

  • Quail, P., and Scandalios, J. (1971). Turnover of genetically defined catalase isozymes of maize. Proc. Natl. Acad. Sci. 681402.

    Google Scholar 

  • Scandalios, J. G. (1965). Subunit dissociation and recombination of catalase isozymes. Proc. Natl. Acad. Sci. 531035.

    Google Scholar 

  • Scandalios, J. G. (1968). Genetic control of multiple molecular forms of catalase in maize. Ann. N.Y. Acad. Sci. 151274.

    Google Scholar 

  • Scandalios, J. G. (1974). Isozymes in development and differentiation. Ann. Rev. Plant Physiol. 25225.

    Google Scholar 

  • Scandalios, J. G., Liu, E. H., and Campeau, M. A. (1972). The effects of intragenic and intergenic complementation on catalase structure and function in maize: A molecular approach to heterosis. Arch. Biochem. Biophys. 153695.

    Google Scholar 

  • Schwartz, D. (1962). Genetic studies on mutant enzymes in maize. III. Control of gene action in the synthesis of pH 7.5 esterase. Genetics 471609.

    Google Scholar 

  • Schwartz, D. (1964). Tissue specificity and the control of gene action. In Structure und Funktion des genetischen Materials, Akademie Verlag, Berlin, p. 201.

    Google Scholar 

  • Schwartz, D. (1971). Genetic control of alcohol dehydrogenase—A competition model for regulation of gene action. Genetics 67411.

    Google Scholar 

  • Schwartz, D. (1976). Regulation of expression of Adh genes in maize. Proc. Natl. Acad. Sci. 73582.

    Google Scholar 

  • Shaklee, J. B., Champion, M. J., and Whitt, G. S. (1974). Developmental genetics of teleosts: A biochemical analysis of lake chubsucker ontogeny. Dev. Biol. 38356.

    Google Scholar 

  • Sims, M. (1965). Methods for detection of enzymatic activity after electrophoresis on polyacrylamide gel in Drosophila species. Nature 207757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanenkov, V.V. Carboxylesterase-2 in the development of the loach (Misgurnus fossilis L.). Biochem Genet 18, 353–364 (1980). https://doi.org/10.1007/BF00484248

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484248

Key words

Navigation