Skip to main content
Log in

Isoenzyme status and genetic variability of serum esterases in the lesser snow goose, Anser caerulescens caerulescens

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

A maximum of 22 bands comprising four esterase subgroups—acetylesterase, carboxylesterase, cholinesterase, and acetylcholinesterase—were detected following electrophoresis of lesser snow goose sera on polyacrylamide gels. A minimum of seven structural genes was surmised to be involved in the biosynthesis of these enzymes following physiochemical characterizations. The genetic variability of these loci was calculated to be 1.25% average heterozygosity, while 14.3% of the loci were polymorphic. These estimates of genetic variability were substantially lower than those reported for other vertebrate species. The low degree of genetic variability found in snow goose serum esterases coupled with the extensive protein multiplicity observed may possibly reflect an adaptive strategy based on “biochemical plasticity” rather than genic heterozygosity for this species. The nature of evolutionary forces acting upon multiple enzyme systems such as esterases is discussed. The concept of “conditional neutrality” is introduced and defined within this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustinsson, K.-B. (1959a). Electrophoretic studies on blood plasma esterases. I. Mammalian plasmata. Acta Chem. Scand. 13571.

    Google Scholar 

  • Augustinsson, K.-B. (1959b). Electrophoresis studies on blood plasma esterases. II. Avian, reptilian, amphibian and piscine plasmata. Acta Chem. Scand. 131081.

    Google Scholar 

  • Augustinsson, K.-B. (1959c). Electrophoresis studies on blood plasma esterases. III. Conclusions. Acta Chem. Scand. 131097.

    Google Scholar 

  • Augustinsson, K.-B. (1968). The use of naphthyl esters as substrates in esterases determinations. Biochim. Biophys. Acta 159197.

    Google Scholar 

  • Augustinsson, K.-B. Axenfors, B., and Elander, M. (1972). Aromatic thiol esters as substrates in quantitative esterase determinations. Anal. Biochem. 48428.

    Google Scholar 

  • Baker, C. M. A., and Hanson, H. C. (1966). Molecular genetics of avian proteins. VI. Evolutionary implications of blood proteins of eleven species of geese. Comp. Biochem. Physiol. 17997.

    Google Scholar 

  • Barker, D. L., and Jencks, W. P. (1969). Pig liver esterase: Physical properties. Biochemistry 83879.

    Google Scholar 

  • Choudhury, S. R. (1974). Studies of substrate hydrolysis by an esterase isozyme of rat serum. Biochim. Biophys. Acta 350484.

    Google Scholar 

  • Davis, B. J. (1964). Disc Electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121404.

    Google Scholar 

  • Ecobichon, D. J. (1965). Multiple forms of human liver esterases. Can. J. Biochem. 43595.

    Google Scholar 

  • Ecobichon, D. J., and Kalow, W. (1963). Effects of sialidase on pseudocholinesterase types. Can. J. Biochem. 41969.

    Google Scholar 

  • Ferguson, K. A. (1964). Starch gel electrophoresis—Application to the classification of pituitary proteins and polypeptides. Metabolism 13985.

    Google Scholar 

  • Gillespie, J. H., and Kojima, K. (1968). The degree of polymorphism in enzymes involved in energy production compared to non-specific enzymes in two Drosophila ananassae populations. Proc. Natl. Acad. Sci. 61582.

    Google Scholar 

  • Grafius, M. E., Bond, H. E., and Miller, D. B. (1971). Acetylcholinesterase interaction with a lipoprotein matrix. Eur. J. Biochem. 22382.

    Google Scholar 

  • Heymann, E., Krisch, K., Buch, H., and Buzello, W. (1969). Inhibition of phenacetin and acetanilide induced methemoglobinemia in the rat by the carboxylesterase inhibitor bis-(p-nitrophenyl)phosphate. Biochem. Pharmacol. 18801.

    Google Scholar 

  • Holmes, R. S., and Masters, C. J. (1967a). The developmental multiplicity and isoenzyme status of cavian esterases. Biochim. Biophys. Acta 132379.

    Google Scholar 

  • Holmes, R. S., and Masters, C. J. (1967b). The developmental multiplicity and isoenzyme status of rat esterases. Biochim. Biophys. Acta 146138.

    Google Scholar 

  • Holmes, R. S., and Masters, C. J. (1968). The ontogeny of pig and duck esterases. Biochim. Biophys. Acta 15981.

    Google Scholar 

  • IUPAC-IUB Commission on Biochemical Nomenclature (1971). The nomenclature of multiple forms of enzymes, recommendations. Arch. Biochem. Biophys. 1471.

    Google Scholar 

  • Johnson, G. B. (1974). Enzyme polymorphism and metabolism. Science 18428.

    Google Scholar 

  • Kaminski, M. (1964). Esterases in avian sera: Species specific pattern and individual variations. Experientia 20286.

    Google Scholar 

  • Karnovsky, M. J., and Roots, L. (1968). A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12219.

    Google Scholar 

  • Main, A. R. (1969). Kinetic evidence of multiple reversible cholinesterases based on inhibition by organophosphates. J. Biol. Chem. 244829.

    Google Scholar 

  • Mendel, B., Mundell, D. B., and Rudney, H. (1943). Studies on cholinesterase and pseudocholinesterase. Biochem. J. 37473.

    Google Scholar 

  • Nei, M., and Roychoudbury, A. K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76379.

    Google Scholar 

  • Ressler, N. (1973). A systematic procedure for the determination of the heterogeneity and nature of multiple electrophoretic bands. Anal. Biochem. 51589.

    Google Scholar 

  • Rodbard, D., and Chrambach, A. (1971). Estimation of molecular radius, free mobility, and valency using polyacrylamide gels. Anal. Biochem. 4095.

    Google Scholar 

  • Selander, R. K., and Kaufman, D. W. (1973). Genic variability and strategies of adaptation in animals. Proc. Natl. Acad. Sci. 701875.

    Google Scholar 

  • Smith, J. J., and Zimmerman, E. G. (1976). Biochemical genetics and evolution of North American blackbirds family Icteridae. Comp. Biochem. Physiol. B53319.

    Google Scholar 

  • Sokal, R. R., and Rolhf, J. (1964). Biometry, Freeman, San Francisco.

    Google Scholar 

  • Svensmark, O. (1961). Human serum cholinesterase as a sialo-protein. Acta Physiol. Scand. 52961.

    Google Scholar 

  • Vessel, E. S. (1972). Inhibition of isozymes. In Hochster, R. M., Kates, M., and Quastel, J. H., (eds.). Metabolic Inhibitors, Vol. 3, Academic Press, New York, pp. 383–425.

    Google Scholar 

  • Zouros, E. (1976). Hybrid molecules and the superiority of the heterozygote. Nature 262227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was carried out under grants from the National Research Council of Canada and the Canadian Wildlife Service to F. Cooke. J. Grossfield was supported by grants from the National Institutes of Health, GM 21630 and FRAP 10576.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bargiello, T.A., Grossfield, J., Steele, R.W. et al. Isoenzyme status and genetic variability of serum esterases in the lesser snow goose, Anser caerulescens caerulescens . Biochem Genet 15, 741–763 (1977). https://doi.org/10.1007/BF00484101

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484101

Key words

Navigation