Skip to main content
Log in

Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The effect of soil redox potential on N2O and N2 emission from soil suspensions was studied under laboratory conditions. Crowley silt loam soil suspensions were equilibrated under controlled (−200, −100, 0, +100, +200, +300, and +400 mV) redox levels, and the amounts of N2 and N2O evolved quantified. At higher redox levels (+300, and +400 mV) nitrification was the dominant soil biological process controlling N chemistry. A small amount of N2O evolved during nitrification. A redox value between +300 and +200 mV was found critical for denitrification to occur. Both N2 and N2O were produced during denitrification. The maximum amount of N2O evolved at a redox value of 0 mV. Dinitrogen emission increased at lower redox levels. The highest N2/N2O evolution ratio was observed at −200 mV and the ratio decreased with increasing redox. A lack of N-balance during denitrification at redox levels of +100, and +200 mV is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackmer, A. M. and Bremner, J. M.: 1978, Soil Biol. Biochem. 10, 187.

    Google Scholar 

  • Blackmer, A. M. and Bremner, J. M.: 1979, Soil Biol. Biochem. 11, 313.

    Google Scholar 

  • Blackmer, M. K., Firestone, R. B., and Tiedje, J. M.: 1980, Appl. Environ. Microbiol. 40, 1060.

    Google Scholar 

  • Bremner, J. M.: 1965, ‘Inorganic Forms of Nitrogen’, in Black, C. A. (ed.), Methods of Soil Analysis, Agronomy, pp. 1149–1156.

  • Bremner, J. M. and Blackmer, A. M.: 1978, Science 199, 295.

    Google Scholar 

  • Bremner, J. M. and Blackmer, A. M.: 1979, Nature (London), 280, 380.

    Google Scholar 

  • Firestone, M. K. and Tiedje, J. M.: 1979, Appl. Environ. Microbiol. 38, 673.

    Google Scholar 

  • Firestone, M. K., Firestone, R. B., and Tiedje, J. M.: 1980, Science 208, 749.

    Google Scholar 

  • Focht, D. D. and Verstraete, W.: 1977, ‘Biochemical Ecology of Nitrification and Denitrification’, in M. Alexander (ed.), Adv. in Microbial Ecology, Vol. 1, pp. 135–214, Plenum Press, New York.

    Google Scholar 

  • Gambrell, R. P. and Patrick, W. H., Jr.: 1978, ‘Chemical and Microbiological Properties of Anaerobic Soils and Sediments’, in D. D. Hook and R. M. Crawford (eds.), Plant Life in Anaerobic Environments, Ann Arbor Sci. Pub. Inc., Michigan, pp. 375–423.

    Google Scholar 

  • Kralova, M., Drazdak, K., Stransky, P., and Kubat, J.: 1978, Scientia agric. bohemoslovaca 3, 155.

    Google Scholar 

  • Lindau, C. W., Delaune, R. D., and Jones, G. L.: 1988, J. Waterpoll. Cont. Fed. 60, 386.

    Google Scholar 

  • Liu, S., Cicerone, R. J., Donahue, T. M., and Chameides, W. L.: 1977, Tellus 29, 251.

    Google Scholar 

  • Letey, J., Jury, W. A., Hadas, A., and Valoras, N.: 1980a, J. Environ. Qual. 9, 223.

    Google Scholar 

  • Letey, J., Valoras, N., Hadas, A., and Focht, D. D.: 1980b, J. Environ. Qual. 9, 227.

    Google Scholar 

  • Letey, J., Hadas, A., Valoras, N., and Focht, D. D.: 1980c, J. Environ. Qual. 9, 232.

    Google Scholar 

  • McElroy, M. B., Wofsy, S. J., and Yung, Y. L.: 1977, Philosophical Transaction of the Royal Society of London 277B, 159.

    Google Scholar 

  • Mulvaney, R. L. and Boast, C. W.: 1986, Soil Sci. Soc. Am. J. 50, 360.

    Google Scholar 

  • National Aeronautics and Space Administration: 1988, Earth System Science, A Closer View, NASA, Washington, D.C..

    Google Scholar 

  • Nommik, H., Pluth, D. J., and Melin, J.: 1984, Can. J. Soil Sci. 64, 21.

    Google Scholar 

  • Patrick, W. H., Jr.: 1960, ‘Nitrate Reduction Rates in a Submerged Soil as Affected by Redox Potential’, 7th Int. Congress of Soil Sci., Madison, WI, 2, pp. 494–500.

  • Patrick, W. H., Jr., Williams, W. G., and Moraghan, J. T.: 1973, Soil Sci. 2, 331.

    Google Scholar 

  • Patrick, W. H., Jr. and Henderson, R. E.: 1981, Soil Sci. Soc. Am. J. 45, 855.

    Google Scholar 

  • Payne, W. J.: 1973, Bacteriol. Rev. 37, 409.

    Google Scholar 

  • Pedrazzini, F. R. and Moore, P. A.: 1983, Z. Pflanzenernahr. Bodenk. 146, 660.

    Google Scholar 

  • Ramanthan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T.: 1985, J. Geophys. Res. 90, 5547.

    Google Scholar 

  • Smith, C. J., Wright, M. F., and Patrick, W. H., Jr.: 1983, J. Environ. Qual. 12, 186.

    Google Scholar 

  • The Merck Index of chemicals and drugs: 1960, 7th ed., Stecher, P. G. (ed.), Merck & Co., Inc., Rahway, N.J., 1639pp.

    Google Scholar 

  • Weiss, R. F.: 1981, J. Geophys. Res. 86, 7185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kralova, M., Masscheleyn, P.H., Lindau, C.W. et al. Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water Air Soil Pollut 61, 37–45 (1992). https://doi.org/10.1007/BF00478364

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00478364

Keywords

Navigation