Skip to main content
Log in

A critique of the vasopressin-memory hypothesis

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

During the past 20 years, evidence has accumulated to suggest that the neuropeptide vasopressin (VP) enhances memory by acting on central mechanisms, and that oxytocin (OT) has amnestic effects. In this review, the evidence for the memory hypothesis with respect to VP is considered and alternative interpretations evaluated. A critical approach has been adopted; negative findings, design considerations and problems with the various hypotheses are given prominence. It is concluded that the memory hypothesis fails to provide an adequate account, and some alternative theories and suggestions are discussed. It is speculated that the peptide may affect behaviour by two distinct mechanisms: peripheral action may involve reinforcement mechanisms, but its central role may be to modulate arousal level, especially in stressful situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ader R, de Wied D (1972) Effects of lysine vasopressin on passive avoidance learning. Psychon Sci 29:46–48

    Google Scholar 

  • Alliot J, Alexinsky T (1982) Effects of posttrial vasopressin injections on appetitively motivated learning in rats. Physiol Behav 28:525–530

    Google Scholar 

  • Anderson LT, David R, Bonnet K, Dancis J (1979) Passive avoidance learning in Lesch-Nyhan-disease: effect of 1-desamino-8-arginine-vasopressin. Life Sci 24:905–910

    Google Scholar 

  • Andrews JS, Newton BA, Sahgal A (1983) The effects of vasopressin on positively rewarded responding and on locomotor activity in rats. Neuropeptides 4:17–29

    Google Scholar 

  • Andrews JS, Sahgal A (1983) The effects of thyrotropin releasing hormone, metabolites and analogues on locomotor activity in rats. Regul Peptides 7:97–109

    Google Scholar 

  • Asin KE (1980) Lysine vasopressin attenuation of diethyldithiocarbamate-induced amnesia. Pharmacol Biochem Behav 12:343–346

    Google Scholar 

  • Bailey WH, Weiss JM (1979) Evaluation of a ‘memory deficit’ in vasopressin-deficient rats. Brain Res 162:174–178

    Google Scholar 

  • Beckwith BE, Couk DI, Till TS (1983) Vasopressin analog influences the performance of males on a reaction time task. Peptides 4:707–709

    Google Scholar 

  • Beckwith BE, Petros T, Kanaan-Beckwith S, Couk DI, Haug RJ (1982) Vasopressin analog (DDAVP) facilitates concept learning in human males. Peptides 3:627–630

    Google Scholar 

  • Blake DR, Dodd MJ, Evans JG (1978) Vasopressin in amnesia. Lancet I:608

    Google Scholar 

  • Bohus B (1977) Effect of desglycinamide-lysine vasopressin (DGLVP) on sexually motivated T-maze behavior of the male rat. Horm Behav 8:52–61

    Google Scholar 

  • Bohus B, Ader R, de Wied D (1972) Effects of vasopressin on active and passive avoidance behavior. Horm Behav 3:191–197

    Google Scholar 

  • Bohus B, Gispen WH, de Wied D (1973) Effect of lysine vasopressin and ACTH 4–10 on conditioned avoidance behavior of hypophysectomized rats. Neuroendocrinology 11:137–143

    Google Scholar 

  • Bohus B, Kovács GL, de Wied D (1978a) Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes. Brain Res 157:414–417

    Google Scholar 

  • Bohus B, Urban I, van Wimersma Greidanus Tj B, de Wied D (1978b) Opposite effects of oxytocin and vasopressin on avoidance behaviour and hippocampal theta rhythm in the rat. Neuropharmacology 17:239–247

    Google Scholar 

  • Bohus B, van Wimersma Greidanus Tj B, de Wied D (1975) Behavioral and endocrine responses of rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain). Physiol Behav 14:609–615

    Google Scholar 

  • Brito GNO (1983) The behavior of vasopressin-deficient rats (Brattleboro strain). Physiol Behav 30:29–34

    Google Scholar 

  • Brito GNO, Thomas GJ, Gingold SI, Gash DM (1981) Behavioral characteristics of vasopressin-deficient rats (Brattleboro strain). Brain Res Bull 6:71–75

    Google Scholar 

  • Broadbent DE (1971) Decision and Stress. Academic Press, London

    Google Scholar 

  • Broadhurst PL (1957) Emotionality and the Yerkes-Dodson law. J Exp Psychol 54:345–352

    Google Scholar 

  • Buijs RM (1982) Vasopressinergic and oxytocinergic pathways, synapses and central release. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin corticoliberin and opiomelanocortins. Academic Press, London, p 51

    Google Scholar 

  • Burbach JPH, Kovács GL, de Wied D, van Nispen JW, Greven HM (1983) A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science 221:1310–1312

    Google Scholar 

  • Burešová O, Škopková J (1980) Vasopressin analogues and spatial short-term memory in rats. Peptides 1:261–263

    Google Scholar 

  • Burešová O, Škopková J (1982) Vasopressin analogues and spatial working memory in the 24-arm radial maze. Peptides 3: 725–728

    Google Scholar 

  • Carew TJ (1970) Do passive avoidance tasks permit assessment of retrograde amnesia in rats? J Comp Physiol Psychol 72:267–271

    Google Scholar 

  • Celestian JF, Carey RJ, Miller M (1975) Unimpaired maintenance of a conditioned avoidance response in the rat with diabetes insipidus. Physiol Behav 15:707–711

    Google Scholar 

  • Clark RG, Jones PM, Robinson JCAF (1983) Vasopressin clearance from cerebrospinal fluid in Brattleboro rats. J Physiol 336: 106P

  • Couk DI, Beckwith BE (1982) Effects of desmopressin acetate (DDAVP) on the learning of a brightness discrimination. Peptides 3:521–526

    Google Scholar 

  • Delanoy RL, Dunn AJ, Tintner R (1978) Behavioral responses to intracerebroventricularly administered neurohypophyseal peptides in mice. Horm Behav 11:348–362

    Google Scholar 

  • Delanoy RL, Dunn AJ, Walter R (1979) Neurohypophyseal hormones and behavior: effects of intracerebroventricularly injected hormone analogs in mice. Life Sci 24:651–658

    Google Scholar 

  • Delanoy RL, Kramarcy NR, Dunn AJ (1982) ACTH 4–10 and lysine vasopressin selectively activate dopamine synthesis in frontal cortex. Brain Res 231:117–129

    Google Scholar 

  • de Wied D (1965) The influence of posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Int J Neuropharmacol 4:157–167

    Google Scholar 

  • de Wied D (1971) Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature 232:58–60

    Google Scholar 

  • de Wied D (1976a) Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci 19:685–690

    Google Scholar 

  • de Wied D (1976b) Hormonal influences on motivation, learning, and memory processes. Hosp Practice 11:123–131

    Google Scholar 

  • de Wied D (1977) Peptides and behaviour. Life Sci 20:195–204

    Google Scholar 

  • de Wied D, Bohus B (1978) The modulation of memory processes by vasotocin, the evolutionarily oldest neurosecretory principle. Prog Brain Res 48:327–334

    Google Scholar 

  • de Wied D, Bohus B, van Wimersma Greidanus Tj B (1975) Memory deficit in rats with hereditary diabetes insipidus. Brain Res 85:152–156

    Google Scholar 

  • de Wied D, Greven HM, Lande S, Witter A (1972) Dissociation of the behavioral and endocrine effects of lysine vasopressin by tryptic digestion. Br J Pharmacol 45:118–122

    Google Scholar 

  • de Wied D, Versteeg DHG (1979) Neurohypophyseal principles and memory. Fed Proc 38:2348–2354

    Google Scholar 

  • de Wied D, van Wimersma Greidanus Tj B, Bohus B, Urban I, Gispen WH (1976) Vasopressin and memory consolidation. Prog Brain Res 45:181–194

    Google Scholar 

  • Dogterom J, van Wimersma Greidanus Tj B, Swaab DF (1977) Evidence for the release of vasopressin and oxytocin into cerebrospinal fluid: measurements in plasma and CSF of intact and hypophysectomized rats. Neuroendocrinology 24: 108–118

    Google Scholar 

  • Dorsa DM, Majumdar LA, Petracca FM, Baskin DG, Cornett LE (1983) Characterization and localization of 3H-arginine-8vasopressin binding to rat kidney and brain tissue. Peptides 4:699–706

    Google Scholar 

  • Ehrensing RH, Michel GF, Baker RP (1982) Vasopressin's effects on acquisition and extinction of conditioned avoidance response to smoking. Peptides 3:527–530

    Google Scholar 

  • Ermisch A, Landgraf R, Heinold G, Sterba G (1982) Vasopressin, blood-brain barrier, and memory. In: Marsan CA, Matthies H (eds) Neuronal plasticity and memory formation. Raven, New York, p 147

    Google Scholar 

  • Ettenberg A, van der Kooy D, Le Moal M, Koob GF, Bloom FE (1982) Aversive properties of vasopressin may account for its putative role in memory. Abstracts of the Society for Neuroscience, 12th Annual Meeting, Minneapolis, p 365

  • Ettenberg A, Le Moal M, Koob GF, Bloom FE (1983) Vasopressin potentiation in the performance of a learned appetitive task: reversal by a pressor antagonist analog of vasopressin. Pharmacol Biochem Behav 18:645–647

    Google Scholar 

  • Eysenck MW (1982) Attention and arousal. Springer, Berlin

    Google Scholar 

  • Fewtrell WD, House AO, Jamie PF, Oates MR, Cooper JE (1982) Effects of vasopressin on memory and new learning in a brain-injured population. Psychol Med 12:423–425

    Google Scholar 

  • Flexner JB, Flexner LB, Hoffman PL, Walter R (1977) Dose-response relationship in attenuation of puromycin-induced amnesia by neurohypophyseal peptides. Brain Res 134: 139–144

    Google Scholar 

  • Gaffan D (1976) Recognition memory in animals. In: Brown J (ed) Recognition and recall. Wiley, London, p 229

    Google Scholar 

  • Garrud P, Gray JA, de Wied D (1974) Pituitary-adrenal hormones and extinction of rewarded behaviour in the rat. Physiol Behav 12:109–119

    Google Scholar 

  • Gash DM, Thomas GJ (1983) What is the importance of vasopressin in memory processes? TINS 6:197–198

    Google Scholar 

  • Gold PE, McGaugh JL (1977) Hormones and memory. In: Miller LH, Sandman CA, Kastin AJ (eds) Neuropeptide influences on the brain and behavior, vol 17, Advances in biochemical psychopharmacology. Raven Press, New York, p 127

    Google Scholar 

  • Gold PW, Goodwin FK, Ballenger JC, Weingartner H, Robertson GL, Post RM (1980) Central vasopressin function in affective illness. In: de Wied D, van Keep PA (eds) Hormones and the brain. MTP Press, Lancaster, p 241

    Google Scholar 

  • Gold PW, Weingartner H, Ballenger JC, Goodwin FK, Post RM (1979) Effects of 1-desamo-8-D-arginine vasopressin on behaviour and cognition in primary affective disorder. Lancet II:992–994

    Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Hebb DO (1966) A Textbook of psychology. Saunders, Philadelphia

    Google Scholar 

  • Heise GA (1981) Learning and memory facilitators: experimental definition and current status. TIPS 2:158–160

    Google Scholar 

  • Holloway FA, Wansley R (1973) Multiphasic retention deficits at periodic intervals after passive-avoidance learning. Science 180:208–210

    Google Scholar 

  • Hostetter G, Jubb SL, Kozlowski GP (1977) Vasopressin affects the behavior of rats in a positively-rewarded discrimination task. Life Sci 21:1323–1327

    Google Scholar 

  • Hostetter G, Jubb SL, Kozlowski GP (1980) An inability of subcutaneous vasopressin to affect passive avoidance behavior. Neuroendocrinology 30:174–177

    Google Scholar 

  • Jenkins JS, Mather HM, Coughlan AK, Jenkins DG (1981) Desmopressin and desglycinamide vasopressin in post-traumatic amnesia. Lancet I:39

    Google Scholar 

  • Kasting NW, Veale WL, Cooper KE (1980) Convulsive and hypothermic effects of vasopressin in the brain of the rat. Can J Physiol Pharmacol 58:316–319

    Google Scholar 

  • Kimble GA (1977) Is learning involved in neuropeptide effects on behavior? In: Miller LH, Sandman CA, Kastin AJ (eds) Neuropeptide influences on the brain and behavior, vol 17, Advances in biochemical psychopharmacology. Raven Press, New York, p 189

    Google Scholar 

  • Koch-Henriksen N, Neilsen H (1981) Vasopressin in post-traumatic amnesia. Lancet I:38–39

    Google Scholar 

  • Koob GF, Le Moal M, Gaffori O, Manning M, Sawyer WH, Rivier J, Bloom FE (1981) Arginine vasopressin and a vasopressin antagonist peptide: opposite effect on extinction of active avoidance in rats. Regul Peptides 2:153–163

    Google Scholar 

  • Korsgaard S, Casey DE, Pedersen NED, Jørgensen A, Gerlach J (1981) Vasopressin in anergic schizophrenia; a cross-over study with lysine-8-vasopressin and placebo. Psychopharmacology 74:379–382

    Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG (1979a) Facilitation of memory consolidation by vasopressin: mediation by terminals of the dorsal noradrenergic bundle? Brain Res 172:73–85

    Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG, de Kloet ER, de Wied D (1979b) Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res 175:303–314

    Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG (1980) The interaction of posterior pituitary neuropeptides with monoaminergic neurotransmission: significance in learning and memory processes. Prog Brain Res 35:123–140

    Google Scholar 

  • Kovács GL, Vecsei L, Telegdy G (1978) Opposite action of oxytocin to vasopressin in passive avoidance behaviour in rats. Physiol Behav 20:801–802

    Google Scholar 

  • Kovács GL, de Wied D (1978) Effects of amphetamine and haloperidol on avoidance behaviour and exploratory activity. Eur J Pharmacol 53:103–107

    Google Scholar 

  • Krejčí I, Kupková B, Dlabač A (1981) Passive avoidance behaviour: opposite effects of oxytocin analogs with agonist and antagonist properties. Regul Peptides 2:285–291

    Google Scholar 

  • Krejčí I, Kupková B, Metyš J, Barth T, Jošt K (1979) Vasopressin analogs: sedative properties and passive avoidance behavior in rats. Eur J Pharmacol 56:347–353

    Google Scholar 

  • Kruse H, van Wimersma Greidanus Tj B, de Wied D (1977) Barrel rotation induced by vasopressin and related peptides in rats. Pharmacol Biochem Behav 7:311–313

    Google Scholar 

  • Lauson HD (1967) Metabolism of antidiuretic hormones. Am J Med 42:713–744

    Google Scholar 

  • LeBœuf A, Lodge J, Eames PG (1978) Vasopressin and memory in Korsakoff syndrome. Lancet II:1370

    Google Scholar 

  • Leccese AP, Isenhour JL (1983) Intraventricular administration of antivasopressin serum inhibits retention in mice. Peptides 4:265–267

    Google Scholar 

  • Legros JJ, Gilot P, Seron X, Claessens J, Adam A, Moeglen JM, Audibert A, Berchier P (1978) Influence of vasopressin on learning and memory. Lancet I:41–42

    Google Scholar 

  • Le Moal M, Koob GF, Koda LY, Bloom FE, Manning M, Sawyer WH, Rivier J (1981) Vasopressor receptor antagonist prevents behavioral effects of vasopressin. Nature 291:491–493

    Google Scholar 

  • Martinez JL, Vasquez BJ, Rigter H, Messing RB, Jensen RA, Liang KC, McGaugh JL (1980) Attenuation of amphetamine-induced enhancement of learning by adrenal demedullation. Brain Res 195:433–443

    Google Scholar 

  • Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG (1982) Blood pressure and heart rate responses in microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacology 21:687–693

    Google Scholar 

  • Mens WBJ, Bouman HJ, Bakker EAD, van Wimersma Greidanus Tj B (1980) Differential effects of various stimuli on AVP levels in blood and cerebrospinal fluid. Eur J Pharmacol 68:89–92

    Google Scholar 

  • Meisenberg G, Simmons WH (1982) Behavioral effects of intracerebroventricularly administered neurohypophyseal hormone analogs in mice. Pharmacol Biochem Behav 16: 819–825

    Google Scholar 

  • Miller M, Barranda EG, Dean MC, Brush FR (1976) Does the rat with hereditary hypothalamic diabetes insipidus have impaired avoidance learning and/or performance? Pharmacol Biochem Behav 5 (Suppl 1):35–40

    Google Scholar 

  • Mühlethaler M, Dreifuss JJ, Gähwiler BH (1982) Vasopressin excites hippocampal neurones. Nature 296:749–751

    Google Scholar 

  • Oliveros JC, Jandali MK, Timsit-Berthier M, Remy R, Benghezal A, Audibert A, Moeglen JM (1978) Vasopressin in amnesia. Lancet I:42

    Google Scholar 

  • Overton DA (1966) State-dependent learning produced by depressant and atropine-like drugs. Psychopharmacologia 10:6–31

    Google Scholar 

  • Pardridge WM (1983) Neuropeptides and the blood-brain barrier. Ann Rev Physiol 45:73–82

    Google Scholar 

  • Patel JB, Ciofalo VB, Iorio LC (1979) Benzodiazepine blockade of passive avoidance taskin mice: a state-dependent phenomenon. Psychopharmacology 61:25–28

    Google Scholar 

  • Pearlmutter AF, Constantini MG, Loeser B (1983) Characterization of 3H-AVP binding sites in particulate preparations of rat brain. Peptides 4:335–341

    Google Scholar 

  • Pfelfer WD, Bookin HB (1978) Vasopressin antagonizes retrograde amnesia in rats following electroconvulsive shock. Pharmacol Biochem Behav 9:261–263

    Google Scholar 

  • Pittman QJ, Lawrence D, McLean L (1982) Central effects of arginine vasopressin on blood pressure in rats. Endocrinology 110:1058–1060

    Google Scholar 

  • Poon LW (1978) Vasopressin and memory. Lancet I:557

    Google Scholar 

  • Ramaekers F, Rigter H, Leonard BE (1977) Parallel changes in behaviour and hippocampal serotonin metabolism in rats following treatment with desglycinamide lysine vasopressin. Brain Res 120:485–492

    Google Scholar 

  • Rees HD, Dunn AJ, Iuvone PM (1976) Behavioral and biochemical response of mice to the intraventricular administration of ACTH analogs and lysine vasopressin. Life Sci 18:1333–1340

    Google Scholar 

  • Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 213:1256–1257

    Google Scholar 

  • Rigter H (1982) Vasopressin and memory: the influence of prior experience with the training situation. Behav Neural Biol 34:337–351

    Google Scholar 

  • Rigter H, van Riezen H, de Wied D (1974) The effects of ACTH- and vasopressin-analogues on CO2-induced retrograde amnesia in rats. Physiol Behav 13:381–388

    Google Scholar 

  • Robbins TW (1984) Cortical noradrenaline, attention and arousal. Psychol Med 14:13–21

    Google Scholar 

  • Robinson ICAF, Jones PM (1982) Neurohypophysial peptides in cerebrospinal fluid: recent studies. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin corticoliberin and opiomelanocortins. Academic Press, London, p 21

    Google Scholar 

  • Rossor MN, Iversen LL, Hawthorn J, Ang VTY, Jenkins JS (1981) Extrahypothalamic vasopressin in human brain. Brain Res 214:349–355

    Google Scholar 

  • Sahgal A (1983a) Vasopressin and behaviour: some arguments for an arousal hypothesis. In: Endröczi E (ed) Neuropeptides and psychosomatic processes. Akademiai Kiado, Budapest, p 55

    Google Scholar 

  • Sahgal A (1983b) Vasopressin retards the acquisition of positively reinforced lever pressing in homozygous Brattleboro rats. Regul Peptides 5:317–326

    Google Scholar 

  • Sahgal A, Keith AB, Wright C (1981) Intra-cerebral administration of vasopressin may disrupt, rather than facilitate, memory. J Anat 133:117

    Google Scholar 

  • Sahgal A, Keith AB, Wright C (1982) Failure of vasopressin to enhance memory in a passive avoidance task in rats. Neurosci Lett 28:87–92

    Google Scholar 

  • Sahgal A, Wright C (1983) A comparison of the effects of vasopressin and oxytocin with amphetamine and chlordiazepoxide on passive avoidance behavior in rats. Psychopharmacology 80:88–92

    Google Scholar 

  • Sahgal A, Wright C, Edwardson JA, Keith AB (1983) Corticotrophin releasing factor is more potent than some corticotrophin-related peptides in affecting passive avoidance behavior in rats. Neurosci Lett 36:81–86

    Google Scholar 

  • Sara SJ, Barnett J, Toussaint P (1982) Vasopressin accelerates appetitive discrimination learning and impairs its reversal. Behav Proc 7:157–167

    Google Scholar 

  • Schulz H, Kovács GL, Telegdy G (1979) Action of posterior pituitary neuropeptides on the nigro-striatal dopaminergic system. Eur J Pharmacol 57:185–190

    Google Scholar 

  • Siegel S (1956) Nonparametric statistics. McGraw-Hill, New York

    Google Scholar 

  • Stegner H, Artman HG, Leake RD, Fisher DA (1983) Does DDAVP (1-desamino-8-d-arginine-vasopressin) cross the blood-CSF barrier? Neuroendocrinology 37:262–265

    Google Scholar 

  • Tanaka M, Versteeg DHG, de Wied D (1977) Regional effects of vasopressin on rat brain catecholamine metabolism. Neurosci Lett 4:321–325

    Google Scholar 

  • Teal JJ, Evans HL (1982) Effects of DDAVP, a vasopressin analog, on delayed matching behavior in the pigeon. Pharmacol Biochem Behav 17:1123–1127

    Google Scholar 

  • Valtin H (1967) Hereditary hypothalamic diabetes insipidus in rats (Brattleboro strain). Am J Med 42:814–827

    Google Scholar 

  • Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophysial principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 77:701–706

    Google Scholar 

  • Valtin H, Schroeder HA (1964) Familial hypothalamic diabetes insipidus in rats (Brattleboro strain). Am J Physiol 206: 425–430

    Google Scholar 

  • van Ree JM, Bohus B, Versteeg DHG, de Wied D (1978) Neurohypophyseal principles and memory processes. Biochem Pharmacol 27:1793–1800

    Google Scholar 

  • van Wimersma Greidanus Tj B, Dogterom J, de Wied D (1975) Intraventricular administration of anti-vasopressin serum inhibits memory consolidation in rats. Life Sci 116:637–644

    Google Scholar 

  • van Wimersma Greidanus Tj B, Croiset G, Bakker E, Bouman H (1979) Amygdaloid lesions block the effect of neuropeptides (vasopressin, ACTH 4–10) on avoidance behavior. Physiol Behav 22:291–295

    Google Scholar 

  • van Wimersma Greidanus Tj B, de Wied D (1976) Dorsal hippocampus: a site of action of neuropeptides on avoidance behavior? Pharmacol Biochem Behav 5 (Suppl 1):29–33

    Google Scholar 

  • Versteeg DHG, Tanaka M, de Kloet ER (1978) Catecholamine concentration and turnover in discrete regions of the brain of the homozygous Brattleboro rat deficient in vasopressin. Endocrinology 103:1654–1661

    Google Scholar 

  • Vorherr H, Bradbury MWB, Hoghoughi M, Kleeman CR (1968) Antidiuretic activity in cerebrospinal fluid during endogenous and exogenous changes in its blood levels. Endocrinology 83:246–250

    Google Scholar 

  • Walter R, Hoffman PL (1977) Proposed mechanisms of action of neurohypophyseal peptides in memory processes and possible routes for the biosynthesis of peptides with a C-terminal carboxamide group. In: Miller LH, Sandman CA, Kastin AJ (eds) Neuropeptide influences on the brain and behavior, vol 17, Advances in Biochemical Psychopharmacology. Raven Press, New York, p 109

    Google Scholar 

  • Walter R, van Ree JM, de Wied D (1978) Modification of conditioned behavior of rats by neurohypophyseal hormones and analogues. Proc Natl Acad Sci USA 75:2493–2496

    Google Scholar 

  • Weingartner H, Gold P, Ballenger JC, Smallberg SA, Summers R, Rubinow DR, Post RM, Goodwin FK (1981) Effects of vasopressin in human memory functions. Science 211:601–603

    Google Scholar 

  • Williams AR, Carey RJ, Miller M (1983a) Behavioral differences between vasopressin-deficient (Brattleboro) and normal Long-Evans rats. Peptides 4:711–716

    Google Scholar 

  • Williams AR, Carey RJ, Miller M (1983b) Effect of vasopressin on open field and activity behavior of the vasopressin-deficient (Brattleboro) rat. Peptides 4:717–720

    Google Scholar 

  • Wright C, Boakes RJ, Ednie JM, Edwardson JA, Keith AB, Sahgal A (1983) Vasopressin-induced barrel rotation in rats. Regul Peptides 7:309

    Google Scholar 

  • Wright C, Sahgal A (1983) Neurohypophysial peptides and pigeon memory. Regul Peptides 7:310

    Google Scholar 

  • Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482

    Google Scholar 

  • Zaidi SMA, Heller H (1974) Can neurohypophysial hormones cross the blood-cerebrospinal fluid barrier? J Endocr 60:195–196

    Google Scholar 

  • Zerbe RL, Kirtland S, Faden AI, Feuerstein G (1983) Central cardiovascular effects of mammalian neurohypophyseal peptides in conscious rats. Peptides 4:627–630

    Google Scholar 

References

  • Boakes RJ, Ednie JM, Edwardson JA, Keith AB, Sahgal A, Wright C (1984) Abnormal behavioural changes associated with vasopressin-induced barrel rotations. Brain Res (in press)

  • Sahgal A, Wright C (1984) Choice, as opposed to latency, measures suggest that vasopressin and oxytocin do not affect memory in rats. Neurosci Lett (in press)

  • de Wied D (1984) The importance of vasopressin in memory. TINS 7:62–64

    Google Scholar 

  • de Wied D, Gaffori O, van Ree JM, de Jong W (1984) Central target for the behavioural effects of vasopressin neuropeptides. Nature 308:276–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahgal, A. A critique of the vasopressin-memory hypothesis. Psychopharmacology 83, 215–228 (1984). https://doi.org/10.1007/BF00464785

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00464785

Key words

Navigation