Skip to main content
Log in

On the semi-micro determination of silica in natural silicates by photometry of β-molybdosilicic acid

β-HPA-Yellow Method

Spektralphotometrische Halbmikrobestimmung von SiO2 in natürlichen Silicaten mit nicht stabilisierter

β-Molybdatokieselsäure

  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Zusammenfassung

Die Optimalbedingungen wurden ermittelt und die Einflüsse der üblichen Bestandteile dieser Silicate untersucht. Die Extinktion der Farblösungen (2–8 ppm SiO2, 1500 ppm Na2MoO2 · 2 H2O, pH 1,70) wird bei 370 nm gemessen. Unter den beschriebenen Bedingungen ist die Reproduzierbarkeit der photometrischen Bestimmung doppelt so hoch wie die des Aufschlusses der Proben (max. 40 ppm SiO2, pH 1,00). Von den Bestandteilen natürlicher Silicate stören Al2O3, TiO2 und F nicht, während P2O5, Gesamteisen und Cr2O3 zusätzliche Extinktionen verursachen, für die Korrekturen angegeben werden.

Es wird eine Vorschrift zur SiO2-Bestimmung an 5 mg-Proben gegeben und Analysenergebnisse mitgeteilt, die an geochemischen Referenzproben erhalten wurden. Die Standardabweichung des Verfahrens ist s=±0,5% (4 Proben, 32 Bestimmungen).

Summary

Optimum conditions for the spectrophotometric determination of silica in natural silicates by means of unstabilized β-molybdosilicic acid have been worked out, and the influences of common constituents of these silicates have been studied.

The absorbance of the colour solutions (2–8 ppm SiO2, 1500 ppm Na2MoO4 · 2 H2O, pH 1.70, is measured at 370 nm. Under the conditions described the precision of photometric determination is twice as high as the precision of sample decomposition and preparation of sample solution (max. 40 ppm SiO2, pH 1.00). Among the constituents of natural silicates Al2O3, TiO2, and F do not interfere. P2O5, total iron, and Cr2O3 will cause additional absorbances, for which corrections are given.

An analytical procedure for 5 mg samples is described, and the results of SiO2 determinations on geochemical reference samples are given. The standard deviation of the method recommended is s = ±0.5% (4 samples, 32 determinations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alexander, G. B.: J. Am. Chem. Soc. 76, 2094 (1954).

    Google Scholar 

  2. —, W. M. Heston, and R. K. Iller: J. Phys. Chem. 58, 453 (1954).

    Google Scholar 

  3. Andersson, L. H.: Acta Chem. Scand. 12, 495 (1958).

    Google Scholar 

  4. —: Arkiv Kem. 19, 223 (1963); cf. Z. Anal. Chem. 201, 436 (1964).

    Google Scholar 

  5. Baker, L. C. W.: J. Am. Chem. Soc. 77, 2136 (1955).

    Google Scholar 

  6. Carrington, A., D. Schonland, and M. C. R. Symons: J. Chem. Soc. 1957, 659.

  7. Chalmers, R. A.: Proc. IIIrd. Conf. Anal. Chem. Prague 1959.

  8. Chalmers, R. A., and A. G. Sinclair: Anal. Chim. Acta 33, 384 (1965); cf. Z. Anal. Chem. 228, 375 (1967).

    Google Scholar 

  9. Doerffel, K.: Z. Anal. Chem. 185, 1 (1962).

    Google Scholar 

  10. Flanagan, F. J.: Geochim. Cosmochim. Acta 31, 289 (1967).

    Google Scholar 

  11. Iller, R. K.: J. Phys. Chem. 56, 680 (1952).

    Google Scholar 

  12. Ingamells, C. O.: Anal. Chem. 38, 1228 (1966); cf. Z. Anal. Chem. 230, 148 (1967).

    Google Scholar 

  13. Jörgensen, C. K.: Advanc. Chem. Phys. 5, 33 (1963).

    Google Scholar 

  14. Krauskopf, K. B.: Geochim. Cosmochim. Acta 10, 1 (1956).

    Google Scholar 

  15. Langmyhr, F. J., and P. R. Graff: Norg. Geol. Undersökelse No. 230 (1965).

  16. Lux, H., R. Kuhn, and T. Niedermaier: Z. Anorg. Allg. Chem. 298, 285 (1959).

    Google Scholar 

  17. Mulay, L. N., and P. W. Selwood: J. Am. Chem. Soc. 77, 2693 (1955).

    Google Scholar 

  18. Mullin, J. B., and J. P. Riley: Anal. Chim. Acta 12, 162 (1955); cf. Z. Anal. Chem. 148, 371 (1955/56).

    Google Scholar 

  19. Olson, A. R., and T. R. Simonson: J. Chem. Phys. 17, 1322 (1949).

    Google Scholar 

  20. Rabinowitch, E., and W. H. Stockmayer: J. Am. Chem. Soc. 64, 335 (1942).

    Google Scholar 

  21. Ringbom, A., E. P. Ahlers, and S. Siitonen: Anal. Chim. Acta 20, 78 (1959); cf. Z. Anal. Chem. 171, 302 (1959/60).

    Google Scholar 

  22. Roubault, M., H. de la Roche, and K. Govindaraju: Sci. Terre 11, 105 (1966).

    Google Scholar 

  23. Schugar, H., Ch. Walling, R. B. Jones, and H. B. Gray: J. Am. Chem. Soc. 89, 3712 (1967).

    Google Scholar 

  24. Shapiro, L., and W. W. Brannock: U.S. Geol. Surv. Circ. 1952, 165. — U.S. Geol. Surv. Bull. 1956, 1036-C; 1962, 1144-A.

  25. Spectrometry Nomenclature (ed. note): Anal. Chem. 36, 2558 (1964).

  26. Strickland, J. D. H.: J. Am. Chem. Soc. 74, a) 862; b) 868; c) 872 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, K. On the semi-micro determination of silica in natural silicates by photometry of β-molybdosilicic acid. Z. Anal. Chem. 245, 139–148 (1969). https://doi.org/10.1007/BF00454286

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00454286

Keywords

Navigation