Skip to main content
Log in

Fructose metabolism in four Pseudomonas species

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

  1. 1.

    ATP-Dependent phosphorylation of fructose could not be detected in extracts of fructose-grown cells of Pseudomonas extorquens strain 16, Pseudomonas 3A2, Pseudomonas acidovorans and Pseudomonas fluorescens. Instead, phosphorylation of fructose to fructose-1-phosphate was found to occur when cell-free extracts were incubated with fructose and phosphoenolpyruvate. Such an activity could not be detected in cell-free extracts of succinate-grown cells.

  2. 2.

    High levels of 1-phosphofructokinase were found in extracts of the above organisms when grown on fructose.

  3. 3.

    Mutants of Pseudomonas extorquens strain 16 lacking 1-phosphofructokinase were unable to grow on fructose. Revertants to growth on fructose had regained the capacity to synthesize this enzyme, indicating its necessary involvement in fructose metabolism.

  4. 4.

    A survey has been carried out of enzymes involved in carbohydrate metabolism in the species listed above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEP-fructose-PTS:

phosphoenol-pyruvate-fructose-phosphotransferase

G-6-P:

glucose-6-phosphate

FDP:

fructose-1,6-diphosphate

F-1-P:

fructose-1-phosphate

1-PFK:

1-phosphofructokinase

6-PG:

6-phosphogluconate

PEP:

phosphoenolpyruvate

F-6-P:

fructose-6-phosphate

References

  • Baumann, P., Baumann, L.: Catabolism of d-fructose and d-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Arch. Microbiol. 105, 225–240 (1975)

    Google Scholar 

  • Clark, B., Holms, W. H.: Control of the sequential utilization of glucose and fructose by Escherichia coli. J. Gen. Microbiol. 95, 191–201 (1976)

    Google Scholar 

  • Colby, J., Zatman, L. J.: Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem. J. 132, 101–112 (1973)

    Google Scholar 

  • Conrad, R., Schlegel, H. G.: Different pathways for glucose and fructose in Rhodopseudomonas capsulata. Arch. Microbiol. 112, 39–48 (1977)

    Google Scholar 

  • Fraenkel, D. G.: The phosphoenol pyruvate-initiated pathway of fructose metabolism in Escherichia coli. J. biol. Chem. 243, 6458–6463 (1968)

    Google Scholar 

  • Hanson, T. E., Anderson, R. L.: Phosphoenolpyruvate-dependent formation of d-fructose-1-phosphate by a four-component phosphotransferase system. Proc. nat. Acad. Sci. (Wash.) 61, 269–276 (1968)

    Google Scholar 

  • Harder, W., Quayle, J. R.: The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochem. J. 121, 753–762 (1971)

    Google Scholar 

  • Kaback, H. R.: The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J. biol. Chem. 243, 3711–3724 (1968)

    Google Scholar 

  • Kornberg, H. L.: Carbohydrate transport by microorganisms. Proc. R. Soc. Lond. B, 183, 105–123 (1973)

    Google Scholar 

  • Kornberg, H. L., Reeves, R. E.: Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochem. J. 128, 1339–1344 (1972)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurements with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Parks, R. E., Jr., Ben-Gershom, E., Lardy, H. A.: Liver fructokinase. J. biol. Chem. 227, 231–242 (1957)

    Google Scholar 

  • Sawyer, M. H., Baumann, P., Baumann, L., Berman, S. M., Canovas, J. L., Berman, R. H.: Pathways of d-fructose catabolism in species of Pseudomonas. Arch. Microbiol. 112, 49–55 (1977a)

    Google Scholar 

  • Sawyer, M. H., Baumann, P., Baumann, L.: Pathways of d-fructose and d-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina and Altermonas communis. Arch. Microbiol. 112, 169–172 (1977b)

    Google Scholar 

  • Vishniac, W., Santer, M.: The Thiobacilli. Bact. Rev. 21, 195–213 (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Dijken, J.P., Quayle, J.R. Fructose metabolism in four Pseudomonas species. Arch. Microbiol. 114, 281–286 (1977). https://doi.org/10.1007/BF00446874

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446874

Key words

Navigation