Skip to main content
Log in

Pathways of d-fructose catabolism in species of Pseudomonas

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cell-free extracts of d-fructose grown cells of Pseudomonas putida, P. fluorescens, P. aeruginosa, P. stutzeri, P. mendocina, P. acidovorans and P. maltophila catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose and contained 1-P-fructokinase activity suggesting that in these species fructuse-1-P and fructose-1,6-P2 were intermediates of d-fructose catabolism. Neither the 1-P-fructokinase nor the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose was present in significant amounts in succinate-grown cells indicating that both activities were inducible. Cell-free extracts also contained activities of fructose-1,6-P2 aldolase, fructose-1,6-P2 phosphatase, and P-hexose isomerase which could convert fructose-1,6-P2 to intermediates of either the Embden-Meyerhof pathway or Entner-Doudoroff pathway. Radiolabeling experiments with 1-14C-d-fructose suggested that in P. putida, P. aeruginosa, P. stutzeri, and P. acidovorans most of the alanine was made via the Entner-Doudoroff pathway with a minor portion being made via the Embden-meyerhof pathway. An edd - mutant of P. putida which lacked a functional Entner-Doudoroff pathway but was able to grow on d-fructose appeared to make alanine solely via the Embden-Meyerhof pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cpm:

counts per min

edd - :

mutant lacking Entner-Doudoroff dehydrase (6-PGA dehydrase)

EDP:

Entner-Doudoroff pathway

EMP:

Embden-Meyerhof pathway

FDP:

fructose-1,6-P2

FDPase:

FDP phosphatase

F-1-P:

fructose-1-P

F-6-P:

fructose-6-P

FPTs:

PEP: d-fructose phosphotransferase system

G-6-P:

glucose-6-P

KDPG:

2-keto-3-deoxy-6-P-gluconate

PEP:

P-enolpyruvate

1-PFK:

1-P-fructokinase

6-PFK:

6-P-fructokinase

6-PGA:

6-P-gluconate

References

  • Baumann, P., Baumann, L.: Catabolism of d-fructose and d-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Arch. Microbiol. 105, 225–240 (1975a)

    Google Scholar 

  • Baumann, L., Baumann, P.: Catabolism of d-fructose and d-ribose by Pseudomonas doudoroffii. II. Properties of 1-phosphofructokinase and 6-phosphofructokinase. Arch. Microbiol. 105, 241–248 (1975b)

    Google Scholar 

  • Blevins, W. T., Feary, T. W., Phibbs, P. V.: 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa. J. Bact. 121, 942–949 (1975)

    Google Scholar 

  • Conrad, R., Schlegel, H. G.: Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata. Arch. Microbiol. 112, 39–48 (1977)

    Google Scholar 

  • Davis, D. H., Stanier, R. Y., Doudoroff, M.: Taxonomic studies on some gram negative polarly flagellated “hydrogen bacteria” and related species. Arch. Mikrobiol. 70, 1–13 (1970)

    Google Scholar 

  • DeLey, J.: Comparative carbohydrate metabolism and localization of enzymes in Pseudomonas and related micro-organisms. J. appl. Bact. 23, 400–411 (1960)

    Google Scholar 

  • Doudoroff, M., Palleroni, N. J., MacGee, J., Contopoulou, R., O'Hara, M.: Metabolism of carbohydrates in Pseudomonas saccharophilia. I. Oxidation of fructose by intact cells and crude cell-free preparations. J. Bact. 71, 196–201 (1956)

    Google Scholar 

  • Entner, N., Doudoroff, M.: Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. biol. Chem. 196, 853–862 (1952)

    Google Scholar 

  • Fraenkel, D. G., Levisohn, S. R.: Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J. Bact. 93, 1571–1578 (1967)

    Google Scholar 

  • Fraenkel, D. G., Vinopal, R. T. Carbohydrate metabolism in bacteria. Ann. Rev. Microbiol. 27, 69–100 (1973)

    Google Scholar 

  • Gee, D. L., Baumann, P., Baumann, L.: Enzymes of d-fructose catabolism in species of Beneckea and Photobacterium. Arch. Microbiol. 103, 205–207 (1975)

    Google Scholar 

  • Groves, W. E., Calder, J., Rutter, W. J.: Fructose diphosphate aldolase. II. Clostridium perfringens. In: Methods in enzymology, Vol. 9 (S. P. Colowick, N. O. Kaplan, eds.), pp. 486–498. London: Academic Press 1966

    Google Scholar 

  • Ornston, L. N., Ornston, M. K., Chou, G.: Isolation of spontancous mutant strains of Pseudomonas putida. Biochem. biophys. Res. Commun. 36, 179–184 (1969)

    Google Scholar 

  • Palleroni, N. J., Contopoulou, R., Doudoroff, M.: Metabolism of carbohydrates in Pseudomonas saccharophila. II. Nature of the kinase reaction involving fructose. J. Bact. 71, 202–207 (1956)

    Google Scholar 

  • Palleroni, N. J., Doudoroff, M.: Some properties and taxonomic subdivision of the genus Pseudomonas. A. Rev. Phytopath. 10, 73–100 (1972)

    Google Scholar 

  • Palleroni, N. J., Doudoroff, M., Stanier, R. Y.: Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J. gen. Microbiol. 60, 215–231 (1970)

    Google Scholar 

  • Palleroni, N. J., Kunisawa, R., Contopoulou, R. Doudoroff, M.: Nucleic acid homologies in the genus Pseudomonas. Int. J. syst. Bact. 23, 333–339 (1973)

    Google Scholar 

  • Phibbs, P. V., Eagon, R. G.: Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch. Biochem. Biophys. 138, 470–482 (1970)

    Google Scholar 

  • Phibbs, P. V., McNamee, C.: Evidence against an oxidative hexose monophosphate pathway in the fluorescent group of Pseudomonas. Abstracts of the Annual Meeting of the American Society for Microbiology, p. 167 (1976)

  • Randerath, K.: Thin-layer chromatography, pp. 93–96 New York-London: Academic Press 1963

    Google Scholar 

  • Reeves, R. E., South, D. J., Blytt, H. J., Warren, L. G.: Pyrophosphate: d-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J. biol. Chem. 249, 7737–7741 (1974)

    Google Scholar 

  • Sobel, M. E., Krulwich, T. A.: Metabolism of d-fructose by Arthrobacter pyridinolis. J. Bact. 113, 907–913 (1973)

    Google Scholar 

  • Stanier, R. Y., Palleroni, N. J., Doudoroff, M.: The aerobic pseudomonads: a taxonomic study. J. gen. Microbiol. 43, 159–271 (1966)

    Google Scholar 

  • Stern, I. J., Wang, C. H., Gilmour, C. M.: Comparative catabolism of carbohydrates in Pseudomonas species. J. Bact. 79, 601–611 (1960)

    Google Scholar 

  • Vicente, M., Cánovas, J. L.: Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. J. Bact. 116, 908–914 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawyer, M.H., Baumann, P., Baumann, L. et al. Pathways of d-fructose catabolism in species of Pseudomonas . Arch. Microbiol. 112, 49–55 (1977). https://doi.org/10.1007/BF00446653

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446653

Key words

Navigation