Skip to main content
Log in

Die Wirkung von d-Aminosäuren auf die Struktur und Biosynthese des Peptidoglycans

Mode of action of d-amino acids on the biosynthesis of peptidoglycan

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The mechanism of growth inhibition by d-amino acids was studied. d-Serine at concentrations from 0.02–0.2 M was sufficient to cause partial growth inhibition in seven species of bacteria representing the four most common types of peptidoglycan. The inhibited cells displayed morphological alterations. In the nucleotide-activated peptidoglycan precursors of these cells, d-alanine residues in position 4 and/or 5 of the peptide moiety were partially or even completely replaced by d-serine. The peptidoglycan also contained d-serine instead of d-alanine, but the percentual content of d-serine was significantly lower than that in the precursors. In addition, the modified peptidoglycan was less cross-linked than the normal one. Four other d-amino acids (d-threonine, d-valine, d-leucine, d-methionine) at concentrations of about 0.2 M caused similar effects as did d-serine when applied to Corynebacterium callunae and Bacillus subtilis. Thus the mode of action of d-amino acids on peptidoglycan synthesis can be generally described as follows: in their presence, at growth inhibiting concentrations modified nucleotide-activated peptidoglycan precursors are formed in which d-alanine residues are replaced by the d-amino acids. They are less efficiently incorporated into peptidoglycan. A high percentage of the modified muropeptides remains non-cross-linked, since they are poor substrates for the transpeptidation reaction. In the majority of the organisms, cross-linking was decreased when d-alanine in position 4 of the peptide subunit was replaced, in two organisms (Corynebacterium insidiosum and Staphylococcus aureus) replacement in position 5 was most effective, however. The low extent of crosslinkage is consistent with the morphological aberrations of inhibited cells. In previous studies with glycine, results were described that were in close analogy to those obtained with d-amino acids. However, glycine can replace not only d-alanine residues in position 4 and 5 but also l-alanine in position 1 of the peptide subunit.

Zusammenfassung

In einem Konzentrationsbereich von 0,02–0,2 M hemmt d-Serin das Wachstum aller untersuchten Bakterien. Gleichzeitig traten morphologische Veränderungen der Bakterienzellen auf. In den nucleotidaktivierten Vorstufen von gehemmten Zellen wurden die d-Alaninreste des Peptidanteils ganz oder teilweise durch d-Serin ersetzt. Auch das Peptidoglycan enthielt d-Serin anstelle von d-Alanin, jedoch weiniger als in den Vorstufen. Zusätzlich war das modifizierte Peptidoglycan zu einem geringeren Anteil quervernetzt als das normale. Vier weitere d-Aminosäuren (Threonin, Valin, Leucin, Methionin) verursachten bei einer Konzentration von 0.2 M ähnliche Wirkungen wie d-Serin. Die Wirkungsweise von d-Aminosäuren auf die Peptidoglycansynthese kann daher allgemein wie folgt beschreiben werden: In Gegenwart von wachstumshemmenden Konzentrationen an d-Aminosäuren werden modifizierte nucleotidaktivierte Peptidoglycanvorstufen synthetisiert, die zu einem geringeren Ausmaß in das Peptidoglycan eingebaut und im Peptidoglycan schlechter quervernetzt werden. Der Ersatz von d-Alanin in Position 4 der Peptiduntereinheit ist dabei in der Regel am wirkungsvollsten. Nur bei Corynebacterium insidiosum und Staphylococcus aureus erwies sich der Ersatz in Position 5 als stärker hemmend. Diese Wirkungsweise entspricht weitgehend derjenigen von Glycin. Im Unterschied zur Wirkung von Glycin kann l-Alanin in Position 1 der Peptiduntereinheit nicht durch d-Aminosäuren ersetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Dab:

Diaminobuttersäure

m-Dmp:

meso-Diaminopimelinsäure

GlcNAc oder G:

N-Acetylglucosamin

MurNAc oder M:

N-Acetylmuraminsäure

Literatur

  • Dienes, L., Weinberger, J. H., Madoff, S.: The transformation of typhoid bacilli into l-forms under various conditions. J. Bact. 59, 755–764 (1950)

    Google Scholar 

  • Dienes, L., Zamecnik, P. C.: Transformation of bacteria into l-forms by amino acids. J. Bact. 64, 770–771 (1952)

    Google Scholar 

  • Dubos, R. J.: Toxic effects of Dl-serine on virulent human tubercle bacilli. Amer. Rev. Tuberc. 60, 385 (1949)

    Google Scholar 

  • Durham, J. N., Milligan, R.: A mechanism of growth inhibition by d-serine in a Flavobacterium. Biochem. biophys. Res. Commun. 7, 342–345 (1962)

    Google Scholar 

  • Fox, S. W., Fling, M., Bollenback, C. N.: Inhibition of bacterial growth by d-leucine. J. biol. Chem. 115, 465–468 (1944)

    Google Scholar 

  • Ghuysen, J. M., Bricas, E., Lache, M., Leyh-Boulle, M.: Structure of the cell walls of Micrococcus lysodeikticus. III. Isolation of a new peptide dimer, Nα-[l-alanyl-γ-(α-d-glutamyl-glycine)]-l-lysyl-d-alanyl-Nα-[l-analyl-γ-(α-d-glutamyl-glycine)]-d-lysyl-d-alanine. Biochemistry 7, 1450–1460 (1968)

    Google Scholar 

  • Ghuysen, J.-M., Shockman, G. D.: Biosynthesis of peptidoglycan. In: Bacterial membranes and walls (L. Leive, ed.), p. 37–130. New York, Dekker 1973

    Google Scholar 

  • Ghuysen, J.-M., Strominger, J. L.: Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. I. Preparation of fragments by enzymatic hydrolysis. Biochemistry 2, 1110–1119 (1963)

    Google Scholar 

  • Grula, E. A.: Cell division in a species of Erwinia. II. Inhibition of division by d-amino acids. J. Bact. 80, 375–385 (1960)

    Google Scholar 

  • Grula, E. A., Grula, M. M.: Inhibition of synthesis of β-alanine by d-serine. Biochim. biophys. Acta (Amst.) 74, 776–778 (1963)

    Google Scholar 

  • Hammes, W. P., Kandler, O.: Biosynthesis of peptidoglycan in Gaffkya homari: The incorporation of peptidoglycan into cell wall and the direction of transpeptidation. Eur. J. Biochem. (in press)

  • Hammes, W. P., Neuhaus, F. C.: Biosynthesis of peptidoglycan in Gaffkya homari: Role of the peptide subunit of uridine diphosphate-N-acetylmuramyl-pentapeptide. J. Bact. 120, 210–218 (1974)

    Google Scholar 

  • Hammes, W., Schleifer, K. H., Kandler, O.: Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bact. 116, 1029–1053 (1973)

    Google Scholar 

  • Hughes, R. C., Tanner, P. J., Stokes, E.: Cell-wall thickening in Bacillus subtilis. Comparison of thickened and normal walls. Biochem. J. 120, 159–170 (1970)

    Google Scholar 

  • Izaki, K., Matsuhashi, M., Strominger, J. L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XIII. Peptidoglycan transpeptidase and d-alanine carboxypeptidase: Penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. biol. Chem. 243, 3180–3192 (1968)

    Google Scholar 

  • Izaki, K., Strominger, J. L.: Biosynthesis of the peptidoglycan of bacterial cell walls. XIV. Purification and properties of two carboxypeptidases from Escherichia coli. J. biol. Chem. 243, 3193–3201 (1968)

    Google Scholar 

  • Kobayashi, Y., Fling, M., Fox, S. W.: Antipodal specifity in the inhibition of growth of Escherichia coli by amino acids. J. biol. Chem. 174, 391–398 (1948)

    Google Scholar 

  • Lark, C., Bradley, D., Lark, K. G.: Further studies on the incorporation of d-methionin into the bacterial cell wall. Its incorporation into the R-layer and the structural consequences. Biochim. biophys. Acta (Amst.) 78, 278–288 (1963)

    Google Scholar 

  • Lark, D., Lark, K. G.: The effects of d-amino acids on Alcaligenes faecalis. Canad. J. Microbiol. 5, 369–379 (1959)

    Google Scholar 

  • Larson, D. M., Setsinger, D. C., Waibel, P. E.: Procedure for determination of d-amino acids. Analyt. Biochem. 39, 395–401 (1971)

    Google Scholar 

  • Man, J. C. de, Rogosa, M., Sharpe, M. E.: A medium for the cultivation of lactobacilli. J. appl. Bact. 23, 130–135 (1960)

    Google Scholar 

  • Matsuda, T., Kotani, S., Kato, K.: Structure of the cell walls of Lactobacillus plantarum, ATCC 8014. 1. Isolation and identification of the peptides released from cell wall peptidoglycans by streptomyces l-3 enzyme. Biochem. J. 11, 111–126 (1968)

    Google Scholar 

  • Needleman, S. B.: Protein sequence determination. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  • Niebler, E., Schleifer, K. H., Kandler, O.: The amino acid sequence of the l-glutamic acid containing mureins of Mc. luteus and Mc. freudenreichii. Biochem. biophys. Res. Commun. 34, 560–568 (1969)

    Google Scholar 

  • Perkins, H. R.: Cell wall mucopeptide of Corynebacterium insidiosum and Corynebacterium sepedonicum. Biochem. J. 110, 47–48 (1968)

    Google Scholar 

  • Plapp, R., Kandler, O.: Identification of l-ornithine and δ-aminosuccinyl ornithine in cell wall hydrolysates of Lactobacillus cellobiosus. Nature (Lond.) 213, 803–804 (1967)

    Google Scholar 

  • Rao, K. R., Sober, H. A.: Preparation and properties of 2,4-dinitrophenyl-l-amino-acids. J. Amer. chem. Soc. 76, 1328–1331 (1954)

    Google Scholar 

  • Reissig, J. L., Strominger, J. L., Leloir, L. F.: A modified colorimetric method for the estimation of N-acetylamino-sugars. J. biol. Chem. 217, 959–966 (1955)

    Google Scholar 

  • Schleifer, K. H., Hammes, W. P., Kandler, O.: Effect of endogenous and exogenous factors on the primary structures of bacterial peptidoglycan. Adv. Microb. Physiol. 13, 243–290 (1976)

    Google Scholar 

  • Schleifer, K. H., Kandler, O.: Zur chemischen Zusammensetzung der Zellwand der Streptokokken. I. Die Aminosäuresequenz des Mureins von Str. thermophilus und Str. faecalis. Arch. Mikrobiol. 57, 335–364 (1967)

    Google Scholar 

  • Schleifer, K. H., Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bact. Rev. 36, 407–477 (1972)

    Google Scholar 

  • Schleifer, K. H., Ried, M., Kandler, O.: Die Aminosäuresequenz des Mureins von Staphylococcus epidermidis (Winslow und Winslow) Evans, Stamm 66. Arch. Mikrobiol. 62, 198–208 (1968)

    Google Scholar 

  • Sheehan, J. C., Mania, D., Nakamura, S., Stock, J. A., Maedu, K.: The structure of telomycin. J. Amer. chem. Soc. 90, 462–470 (1968)

    Google Scholar 

  • Shockman, G. D., Thompson, J. S., Conover, M. J.: The autolytic enzyme system of Streptococcus faecalis. II. Partial characterization of the autolysin and its substrate. Biochemistry 6, 1054–1065 (1967)

    Google Scholar 

  • Strominger, J. L., Birge, C. H.: Nucleotide accumulation in Staphylococcus aureus by glycine. J. Bact. 89, 1124–1127 (1965)

    Google Scholar 

  • Takebe, I.: Extent of cross linkage in the murein sacculus of Escherichia coli B cell wall. Biochim. biophys. Acta (Amst.) 101, 124–126 (1965)

    Google Scholar 

  • Tipper, D. J.: Mechanism of autolysis of isolated cell walls of Staphylococcus aureus. J. Bact. 97, 837–847 (1969)

    Google Scholar 

  • Tuttle, A. L., Gest, H.: Induction of morphological sacculus of Escherichia coli B cell wall. Biochim. biophys. Acta (Amst.) 101, 124–126 (1960)

    Google Scholar 

  • Warth, A. D., Strominger, J. L.: Structure of peptidoglycan from vegetative cell walls of Bacillus subtilis. Biochemistry 10, 4349–4358 (1971)

    Google Scholar 

  • Weidel, W., Pelzer, H.: Bagshaped macromolecules: A new outlook on bacterial cell walls. Advanc. Enzymol. 26, 193–232 (1964)

    Google Scholar 

  • Weiss, N., Plapp, R., Kandler, O.: Die Aminosäuresequenz des DAP-haltigen Mureins von Lactobacillus plantarum und Lactobacillus inulinus. Arch. Mikrobiol. 58, 313–323 (1967)

    Google Scholar 

  • Welsch, M.: Formation des protoplastes d'Escherichia coli sous l'influence de la glycine et d'autres acides amines. Schweiz. Z. allg. path. Bact. 21, 741–768 (1958)

    Google Scholar 

  • Whitney, J. G., Grula, E. A.: A major attachment site for d-serine in the cell wall mucopeptide of Micrococcus lysodeikticus. Biochim. Biophys. Acta (Amst.) 158, 124–129 (1968)

    Google Scholar 

  • Yabu, K., Huempfner, H. R.: Inhibition of growth of Mycobacterium smegmatis and of cell wall synthesis by d-serine. Anti-microbial Agents and Chemotherapy 6, 1–10 (1974)

    Google Scholar 

  • Yaw, K. E., Kakavas, J. C.: Studies on the effects of d-amino acids on Brucella abortus. J. Bact. 63, 263–268 (1952)

    Google Scholar 

  • Young, F. E.: Variation in the chemical composition on the cell walls of Bacillus subtilis during growth in different media. Nature (Lond.) 207, 104–105 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trippen, B., Hammes, W.P., Schleifer, KH. et al. Die Wirkung von d-Aminosäuren auf die Struktur und Biosynthese des Peptidoglycans. Arch. Microbiol. 109, 247–261 (1976). https://doi.org/10.1007/BF00446636

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446636

Key words

Navigation