Skip to main content
Log in

Kinetics of dissolution of Antarctic diatom frustules and the biogeochemical cycle of silicon in the Southern Ocean

  • Published:
Polar Biology Aims and scope Submit manuscript

Summary

In order to simulate the fate of biogenic silica generated in the surface waters of the Southern Ocean, the dissolution of silica frustules was studied for seven natural assemblages of diatoms, collected during summer 1984 in the Indian sector, and two typical Antarctic diatoms (Nitzschia cylindrus and Chaetoceros deflandrei), following the procedure of Kamatani and Riley (1979). For mean summer conditions in the surface waters of the Southern Ocean (2<T°C<12; 7.5<pH<8) rate coefficients of dissolution range from 2.2 to 18.5x10-3d-1 for the natural assemblages. The silica frustules trapped by fecal pellets and by gelatinous aggregates, and rapidly transported through the cold waters of the Circumpolar Current, reach the sea bottom of either the continental shelves of the abysses without loosing much of the initial amount of silica (less than 10%). A model based on Stokes' law, modified to take in account of non ideal conditions and of the upwelling rate, is used in order to simulate the fate of silica of unaggregated particles settling down in the cold waters of the Antarctic Divergence. It supports the ideas that 1-the cycle of siliceous particles which radii are <2 μm (i.e., of a part of the nanoplankton) is completely achieved in the surface layer, 2-although the biogenic silica of large unaggregated particles (radii over 25 μm) may reach the seabottom (within one month to a few years) without complete dissolution, the main explanation for the accumulation of biogenic silica on Antarctic abysses remains transport by fecal pellets and gelatinous aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bodungen B von, Smetacek VS, Tilzer MM, Zeitzschel B (1986) Primary production and sedimentation during spring in the antarctic peninsula region. Deep-Sea Res 33:177–194

    Google Scholar 

  • Brun-Cottan JC (1976a) Contribution Ă  l'Ă©tude de la granulomĂ©trie et de la cinĂ©tique des particules mrines. Thèse D es S Univ P et M Curie, Paris, pp 200

  • Brun-Cottan JC (1976b) Stokes settling and dissolution rate model for marine particles as a function of size distribution. J Geophys Res 81:1601–1606

    Google Scholar 

  • Bzrezinski MA (1987) Physiological and environmental factors affecting diatom species competition in a Gulf Stream warmcore ring. Ph D Diss, Oregon State University, Corvallis, pp 284

  • Dietlin B (1982) Contribution Ă  l'Ă©tude de l'influence de la turbulence sur la vitesse de sĂ©dimentation des particules marines. Thèse D Ing, Univ P et M Curie, Paris, pp 294

  • Dunbar RB (1984) Sediment trap experiments on the antarctic continental margin. Antarct J US 19:70–71

    Google Scholar 

  • Dunbar RB, Anderson JB, Domack EW, Jacobs SS (1985a) Oceanographic influences on sedimentation along the antarctic continental shelf. Antarct Res Ser 43:291–312

    Google Scholar 

  • Dunbar RB, Macpherson AJ, Wefer G (1985b) Water-column particulate flux and seafloor deposits in the Bransfield Strait and southern Ross Sea, Antarctica. Antarct J US Rev, pp 90–100

  • Geissler U (1958) Das membranpotential einiger diatomeen und seine Bedeutung fĂĽr die lebende kieselalgenzelle. Mikroskopie 13:145–172

    Google Scholar 

  • Goldberg ED (1952) Iron assimilation by marine diatoms. Biol Bull 102:243–248

    Google Scholar 

  • Gordon AL, Taylor HW (1975) Heat and salt balance within the cold waters of the world ocean. Numerical models of ocean circulation. Nat Acad Sci, Whashington DC, pp 54–56

    Google Scholar 

  • Harvey HW (1937) The supply of iron to diatoms. Mar Biol Assoc UK 22:205–219

    Google Scholar 

  • Hubbard LML, Riley JP (1984) Kinetics studies of the rate of dissolution of silica and diatom tests in seawater. J Oceanogr Soc Jpn 40:148–154

    Google Scholar 

  • Hurd DC (1973) Interactions of biogenic opal, sediment and sewater in the Central Equatorial Pacific. Geochim Cosmochim Acta 37:2257–2282

    Google Scholar 

  • Iler RK (1955) The colloidal chemistry of silica and silicates. New York, Cornell University Press, pp 324

    Google Scholar 

  • Ives KJ (1959) The significance of surface electrical charge on algae in water purification. J Biochem Microbiol Tech Eng 1:37–47

    Google Scholar 

  • Jacques G, TrĂ©guer P (1986) Ecosystèmes pĂ©lagiques marins. Masson, Paris New York, pp 250

    Google Scholar 

  • Kamatani A (1982) Dissolution rates of silica from diatoms decomposing at various temperatures. Mar Biol 68:91–96

    Google Scholar 

  • Kamatani A, Riley JP (1979) Rate of dissolution of diatom silica walls in seawater. Mar Biol 55:29–35

    Google Scholar 

  • Kamatani A, Ejiri N, TrĂ©guer P (1988) The dissolution kinetics of diatom ooze from the Antarctic area. Deep-Sea Res 35:1195–1203

    Google Scholar 

  • Kamatani A, Ridley JP, Skirrow G (1980) The dissolution of opaline silica of diatom tests in seawater. J Oceanogr Soc Jpn 36:201–208

    Google Scholar 

  • Ledford-Hoffman PA, De Master DJ, Nittrouer CA (1986) Biogenicsilica accumulation in the Ross Sea and the importance of Antarctic continental-shelf deposits in the marine silica budgets. Geochim Cosmochim Acta 50:2099–2110

    Google Scholar 

  • Lewin JC (1961) The dissolution of silica from diatom walls. Geochim Cosmochim Acta 21:182–198

    Google Scholar 

  • Litsizin AP (1972) Sedimentation in the World Ocean. Soc Eco Min Paleo (special issue) 17:218

    Google Scholar 

  • McCave IN (1975) Vertical flux of particles in the ocean. Deep-Sea Res 22:491–502

    Google Scholar 

  • MacNown JS, Malaika J, Pramanik HR (1951) Particle shape and settling velocity. Proc Int Hydr Res, 4th Meeting, Bombay, pp 511–522

  • Martin JH, Knauer GA (1973) The elemental composition of plankton. Geochim Cosmochim Acta 37:1639–1653

    Google Scholar 

  • Nelson DM, Goering JJ (1977) Near-surface dissolution in the upwelling region off northwest Africa. Deep-Sea Res 24:65–73

    Google Scholar 

  • Nelson DM, Gordon LI (1982) Production and pelagic dissolution of biogenic silica in the Southern Ocean. Geochim Cosmochim Acta 46:491–501

    Google Scholar 

  • Nelson DM, Smith WO (1986) Phytoplankton bloom dynamics of the western Ross Sea ice edge II-Mesoscale cycling of nitrogen and silicon. Deep-Sea Res 33:1389–1412

    Google Scholar 

  • Nelson DM, Smith WO, Gordon LI, Huber BA (1987) Spring distributions of density of nutrients and phytoplankton biomass in the ice edge zone of the Weddell Sea. J Geophys Res 92:7181–7185

    Google Scholar 

  • Pichon JJ (1985) Les diatomĂ©es traçeurs de l'Ă©volution climatique et hydrologique de l'OcĂ©an Austral au cours du dernier cycle climatique. Thèse D es S, Univ Bordeaux, 250 pp

  • Priddle J, Heywood RB, Theriot E (1986a) Some environmental factors influencing phytoplankton in the Southern Ocean around South Georgia. Polar Biol 5:65–79

    Google Scholar 

  • Priddle J, Hawes I, Ellis-Evans JC, Smith TJ (1986b) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238

    Google Scholar 

  • Richards FA (1981) Coastal upwelling. AGU, Washington 544 pp

    Google Scholar 

  • Schrader HJ (1971) Fecal pellets: role in sedimentation of pelagic diatoms. Science 174:55–57

    Google Scholar 

  • Smetacek VS (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251

    Google Scholar 

  • Suess E, Ungerer CA (1981) Element and phase composition of particulate matter from the circumpolar current between New Zealand and Antarctica. Oceanol Acta 4:151–160

    Google Scholar 

  • TrĂ©guer P, Le Corre P (1975) Manuel d'analyses des sels nutritifs dans l'eau de mer. Utilisation de l'Auto Analyzer II Technicon. Univ Bretagne Occidentale, Brest, 110 pp

    Google Scholar 

  • TrĂ©guer P, Jacques G (1986) L'OcĂ©an Antarctique. La Recherche 178:746–755

    Google Scholar 

  • TsunogaĂŻ S, Noriki S, Harada K Kurosaki T, Wanatabe Y, Maedaa M (1986) Large but variable particulate flux in the Antarctic Ocean and its significance for the chemistry of Antarctic Water. J Oceanogr Soc Jpn 42:83–90

    Google Scholar 

  • Urrere MA, Knauer GA (1981) Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment. J Plankton Res 3:369–387

    Google Scholar 

  • Van Bennekom AJ (1981) The role of aluminium in the dissolution kinetics of diatom frustules. In: Ross R (ed) Proc 6th Diatom Symp 1980. Koeltz, Koenigstein (FRG), pp 445–454

    Google Scholar 

  • Van Bennekom AJ, Van Der Gaast SJ (1976) Possible clay structures in frustules of living diatoms. Geochim Cosmochim Acta 40:1149–1152

    Google Scholar 

  • Van Bennekom AJ, Berger GW, Van Der Gaast SJ, De Vries RTP (1988) Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector). Palaeogeog Palaeochim Palaeoecol (special issue) (in press)

  • Walton Smith FG (1974) Handbook of Marine Science 19, CRC Press Pub I, pp 64–65

  • Wollast R (1974) The silica problem. In: Goldberg ED (ed) The Sea. Wiley and Sons, New York, pp 359–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tréguer, P., Kamatani, A., Gueneley, S. et al. Kinetics of dissolution of Antarctic diatom frustules and the biogeochemical cycle of silicon in the Southern Ocean. Polar Biol 9, 397–403 (1989). https://doi.org/10.1007/BF00442531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00442531

Keywords

Navigation