Skip to main content
Log in

Hyperthermia in cancer therapy

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Tumor hyperthermia is a rediscovered technique of oncotherapy which has confirmed value in many studies on cell cultures, rodent and mammalian tumors as well as first investigations on patients with tumors. The biological basis for using heat in the treatment of cancer is well established. Various direct and indirect mechanisms are significant for the effect of hyperthermia on tumor tissue. Whereas there are already extensive studies on the direct effects of hyperthermia on DNA, RNA, and protein synthesis, energy metabolism, and the membrane properties of tumor cells, the indirect effects have only been investigated more closely in recent years. These are likewise important for the damage to the tumor tissue and are mediated above all via alterations in the microcirculation and the environment. The recently gained increasing significance of this new technique in combination with other treatment modalities is well documented. Technical problems of heat application must be overcome, especially in deeper tumors and problems of thermometry must be solved in order to be able to apply tumor hyperthermia not only to selected advanced or recurrent tumors, but in order to use it as the fourth pillar of tumor therapy besides surgery, radiotherapy and chemotherapy. This article considers the biological basis and important aspects of hyperthermia therapy in combination with radiotherapy and chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe M, Hiraoka M, Takahashi M, Egawa S, Matsuda C, Onogama Y, Morita K, Katzehi M, Sugahara T (1986) Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy. Cancer 58:1589–1595

    Google Scholar 

  2. Arcangeli G, Mauro F (1980) Proceedings of the First Meeting of the European Group of Hyperthermia in Radiation Oncology. Marson, Milan

  3. Arcangeli G, Cividalli A, Lovisolo G (1980) Effectiveness of local hyperthermia in association with radiotherapy or chemotherapy: comparison of multimodality treatments on multiple neck node metastases. In: Arcangeli G, Mauro F (eds) Proceedings of the First Meeting of the European Group of Hyperthermia in Radiation Oncology. Marson, Milan, pp 257–265

    Google Scholar 

  4. Arcangeli G, Cividalli A, Lovisolo G, Nervi C (1983) Clinical results after different protocols of combined local heat and radiation. Strahlentherapie 159:82–89

    Google Scholar 

  5. Ardenne M von (1981) Krebs-Mehrschritt-Therapie. Dtsch Ärztebl 33:1560–1566

    Google Scholar 

  6. Bede Z, Diven Z, Xiaoxiong W (Abstr) (1980) Clinical effects of radiation combined with radiofrequency diathermy in bladder cancer. Third International Symposium of Cancer Therapy by Hyperthermia, Drugs and Radiation. Fort Collins, Colorado, June 22–26

  7. Ben-Hur E (1972) Thermally enhanced radiosensitivity of cultured Chinese hamster cells. Nature 238:209–211

    Google Scholar 

  8. Beuningen D van (1983) Hyperthermie als zytotoxisches und strahlensensibilisierendes Agens: zelluläre Effekte. Strahlentherapie 159:60–66

    Google Scholar 

  9. Beuter K (1986) Möglichkeiten der noninvasiven Temperaturmessung mit Ultraschall. In: Streffer C, Herbst M, Schwabe H (eds) Lokale Hyperthermie. Deutscher Ärzteverlag, Cologne, pp 111–120

    Google Scholar 

  10. Bhuyan BK (1979) Kinetics of cell kill by hyperthermia. Cancer Res 39:2277–2284

    Google Scholar 

  11. Bicher HI, Hetzel FW, Sandhu TS, Frinak S, Vaupel P, O'Hara MD, O'Brien T (1980) Effects of hyperthermia on normal and tumor microenvironment. Radiology 137:523–530

    Google Scholar 

  12. Bleehen NM (1984) Hyperthermia with drugs: current status. Strahlentherapie 160: 721–724

    Google Scholar 

  13. Brammer I, Zywietz F, Jung H (1979) Changes of histological and proliferative indices in the Walker carcinoma with tumor size and distance from blood vessel. Eur J Cancer 15:1329–1336

    Google Scholar 

  14. Bruns P (1887) Die Heilwirkung des Erysipels auf Geschwülste. Beitr Klin Chir 3:443–466

    Google Scholar 

  15. Bull JM, Lees D, Schuette W, Wang-Peng J, Smith R, Bynum G, Altkinson ER, Gottdiener JS, Gralnick HR, Shawker TH, De Vita V Jr (1979) Whole body hyperthermia: a phase I trial of a potential adjuvant to chemotherapy. Ann Intern Med 90:317–323

    Google Scholar 

  16. Burdon RH, Slater A, McMahon M, Cato ACB (1982) Hyperthermia and the heat-shock proteins of HeLa cells. Br J Cancer 45:953–963

    Google Scholar 

  17. Busch W (1866) Über den Einfluß, welchen heftigere Erysipeln auf organisierte Neubildungen ausüben. Verhandl Naturh Preuss Rhein Westphal 23:28–30

    Google Scholar 

  18. Cavaliere R, Ciocatto EC, Giovanella BC, Morrica C, Rossi-Fanelli A (1967) Selective heat sensivity of cancer cells. Cancer 20:1351–1381

    Google Scholar 

  19. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas — with a report of ten original cases. Am J Med Sci 105:487–511

    Google Scholar 

  20. Coley WB (1896) The therapeutic value of the mixed toxins of erysipelas and bacillus prodigeosus in the treatment of inoperable malignant tumors. Am J Med Sci 112:251–281

    Google Scholar 

  21. Colvin M, Brundrett RB, Kan MN, Jardine I, Fenselau C (1976) Alkylating properties of phosphoramide mustard. Cancer Res 36:1121–1126

    Google Scholar 

  22. Corry P, Barlogie B, Spanos W (1980) Approaches to clinical application of combinations of nonionizing and ionizing radiations. In: Mevn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 637–644

    Google Scholar 

  23. Crile G (1963) The effects of heat and radiation on cancers implanted on the feet of mice. Cancer Res 23:372–380

    Google Scholar 

  24. Dahl O (1981) Hyperthermic potentiation of doxorubicin (adriamycin) and cyclophosphamide in a transplantable neurogenic rat cell line (BT4) in BD-IX rats. Strahlentherapie 157:616

    Google Scholar 

  25. Dethlefsen LA, Dewey WC (eds) (1982) Proceedings of the third international symposium: cancer therapy by hyperthermia, drugs and radiation. J Natl Cancer Inst Monogr 61

  26. Dickson JA (1977) The effects of hyperthermia in animal tumor systems. Rec Res Cancer Res 59:43–111

    Google Scholar 

  27. Dickson JA, Calderwood SK (1980) Temperature range and selective sensivity of tumors to hyperthermia: a critical review. Ann NY Acad Sci 335:180–205

    Google Scholar 

  28. Didolkar MS, Fitzpatrick JL, Jackson AJ, Johnston GS (1986) Toxicity and complications of vascular isolation and hyperthermia perfusion with imidazole carboxamide (DTIC). Cancer 57:1961–1966

    Google Scholar 

  29. Edrich J, Liep HD (1986) Microwave thermography for control of microwave induced hyperthermia: potentials, limitations and preliminary results. In: Streffer C, Herbst M, Schwabe H (eds) Lokale Hyperthermie. Deutscher Ärzteverlag, Cologne, pp 121–125

    Google Scholar 

  30. Emami B, Song CW (1984) Physiological mechanisms in hyperthermia: a review. Int J Radiat Oncol Biol Phys 10:289–295

    Google Scholar 

  31. Emami B, Nussbaum GH, Hahn N, Piro AJ, Dritschilo A, Quimby F (1981) Histopathological study on the effects of hyperthermia on microvasculature. Int J Radiat Oncol Biol Phys 7:343–348

    Google Scholar 

  32. Endrich B, Zweifach BW, Reinhold HS, Intaglietta M (1979) Quantitative studies of microcirculatory function in malignant tissue: influence of temperature on microvascular hemodynamics during the early growth of the BA 1112 rat sarcoma. Int J Radiat Oncol Biol Phys 5:2021–2030

    Google Scholar 

  33. Endrich B, Intaglietta M, Messmer K (1982) Besonderheiten der Mikrozirkulation in bösartigen Tumoren. 6. Jahrestagung der Gesellschaft für Mikrozirkulation, Munich, 26–27 November

  34. Engelhardt R, Neumann H, Adam G, Hinkelbein W, v.d. Tann M (1983) Möglichkeiten der Ganzkörperhyperthermie. Strahlentherapie 159:99–103

    Google Scholar 

  35. Fletcher GH, Nervi C, Withers HR (1983) Biological bases and clinical implications of tumor radioresistance Proceedings of the second international symposium, Sept 1980. Marson, New York

    Google Scholar 

  36. Folkman J, Cotran R (1976) Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 16:207–248

    Google Scholar 

  37. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Google Scholar 

  38. Freeman ML, Dewey WL, Hopwood LE (1977) Effect of pH on hyperthermic cell survival. J Natl Cancer Inst 58:1837–1839

    Google Scholar 

  39. Gerweck LE (1985) Hyperthermia in cancer therapy: the biological basis and unresolved questions. Cancer Res 45:3408–3414

    Google Scholar 

  40. Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41:845–849

    Google Scholar 

  41. Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39:966–972

    Google Scholar 

  42. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Google Scholar 

  43. Hahn GM (1978) Interactions of drugs and hyperthermia in vitro and in vivo. In: Streffer C (ed) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 72–79

    Google Scholar 

  44. Hahn GM (1979) Potential for therapy of drugs and hyperthermia. Cancer Res 39:2264–2268

    Google Scholar 

  45. Hahn GM (1982) Hyperthermia and cancer. Plenum Press, New York

    Google Scholar 

  46. Hahn GM, Skiu EC (1983) Effect of pH and elevated temperature on the cytotoxicity of some chemotherapeutic agents on Chinese hamster cells in vitro. Cancer Res 43:5789–5791

    Google Scholar 

  47. Hammersen F, Endrich B, Messmer K (1983) The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int J Microcirc Clin Exp 4:31–43

    Google Scholar 

  48. Hazan G, Ben-Hur E, Yerushalmi A (1981) Synergism between hyperthermia and cyclophosphamide in vivo: the effect of dose fractionation. Eur J Cancer 17:681–684

    Google Scholar 

  49. Herbst M, Sauer R (1986) Randomisierte Studienprotokolle zur klinischen Hyperthermic und Radiotherapie. In: Streffer C, Herbst M, Schwabe H (eds) Lokale Hyperthermie. Deutscher Ärzteverlag, Cologne

    Google Scholar 

  50. Herman TS (1983) Temperature dependence of adriamycin, cisdiamminedichloroplatinum, bleomycin, and 1,3-bis-(2-chloroethyl)-1-nitrosurea cytotoxicity in vitro. Cancer Res 43:517–520

    Google Scholar 

  51. Herman TS, Sweets CC, White DM, Gerner EW (1982) Effect of rate of heating on lethality due to hyperthermia and selected chemotherapeutic drugs. J Natl Cancer Inst 68:487–491

    Google Scholar 

  52. Herman TS, Zukoski CF, Anderson RM, Hutter JJ, Blitt CD, Malone JM, Larson DF, Dean JC, Roth HB (1982) Whole-body hyperthermia and chemotherapy for treatment of patients with advanced, refractory malignancies. Cancer Treat Rep 66:259–262

    Google Scholar 

  53. Hiraoka M, Dodo Y, Ono K, Takahashi M, Hishida H, Abe M (1984) Clinical results of radiofrequency hyperthermia combined with radiation in the treatment of radioresistant cancers. Cancer 54:2898–2904

    Google Scholar 

  54. Honess DJ, Bleehen NM (1981) Hyperthermia and cytotoxic drugs — combined effects on normal mouse bone marrow CFUS. Br J Cancer 44:282

    Google Scholar 

  55. Hornback NB (1984) Hyperthermia and cancer, vols 1 and 2. CRC Press, Boca Raton

    Google Scholar 

  56. Johnson HA, Payelic M (1973) Thermal enhancement on thio-Tepa cytotoxicity. J Natl Cancer Inst 50:903–908

    Google Scholar 

  57. Kamura T, Nielsen OS, Overgaard J, Andersen AH (1982) Development of thermotolerance during fractionated hyperthermia in a solid tumor in vivo. Cancer Res 42:1744–1748

    Google Scholar 

  58. Kim JH, Hahn EW, Antich PP (1982) Radiofrequency hyperthermia for clinical cancer therapy. Natl Cancer Inst Monogr 61:339–342

    Google Scholar 

  59. Lange J, Eisler K, Zänker K, Siewert JR (1986) “Künstliches Fieber” in der Krebstherapie. Dtsch Ärztebl 83:186–188

    Google Scholar 

  60. Larkin JM (1979) A clinical investigation of total body hyperthermia as cancer therapy. Cancer Res 39:2252–2254

    Google Scholar 

  61. Larkin JM, Edwards WS, Smith DE, Clark PJ (1977) Systemic thermotherapy: description of a method and physiologic tolerance in clinical subjects. Cancer 40:3155–3159

    Google Scholar 

  62. Leeper DB, Karamuz JE, Henle KJ (1977) Hyperthermia induced alterations in macromolecular synthesis. Radiat Res 70:610

    Google Scholar 

  63. Leeper DB, Karamuz JE, Henle KJ (1977) Effect of inhibition of macromolecular synthesis on the induction of thermotolerance. Proc Am Assoc Cancer Res 18:139

    Google Scholar 

  64. Li GC (1984) Thermal biology and physiology in clinical hyperthermia: current status and future needs. Cancer Res [Suppl] 44:4886s-4893s

    Google Scholar 

  65. Li GC, Petersen NS, Mitchell KH (1982) Induced thermal tolerance and heat shock protein synthesis in chinese hamster ovary cells. Br J Cancer [Suppl V] 45:132–136

    Google Scholar 

  66. Magin RL, Cysyk RL, Litterst CL (1980) Distribution of adriamycin in mice under conditions of local hyperthermia which improve systemic drug therapy. Cancer Treat Rep 64:203–210

    Google Scholar 

  67. Manning MR, Cetas TC, Miller RC, Oleson JR, Connor WG, Gerner EW (1982) Clinical hyperthermia: results of a phase I trial employing hyperthermia alone or in combination with external beam or interstitial radiotherapy. Cancer 49:205–216

    Google Scholar 

  68. Mano-Hirano Y, Sato N, Sawasaki Y, Haranakai K, Satomi N, Nariuchi H, Goto T (1987) Inhibition of tumorinduced migration of bovine capillary endothelial cells by mouse and rabbit tumor necrosis factor. JNCI 78:115–120

    Google Scholar 

  69. Marmor JB (1979) Interactions of hyperthermia and chemotherapy in animals. Cancer Res 39:2269–2276

    Google Scholar 

  70. Marmor JB, Hilerio FJ, Hahn GM (1979) Tumor eradication and cell survival after localized hyperthermia induced by ultrasound. Cancer Res 39:2166–2171

    Google Scholar 

  71. Marmor J, Kozak D, Hahn G (1979) Effects of systemically administered bleomycin or adriamycin with local hyperthermia on primary tumor and lung metastases. Cancer Treat Rep 63:1279–1290

    Google Scholar 

  72. Marmor JB, Hahn GM (1980) Combined radiation and hyperthermia in superficial human tumors. Cancer 46:1986–1991

    Google Scholar 

  73. Mattsson J, Peterson HI (1981) Influence of vasoactive drugs on tumour blood flow (review). Anticancer Res 1:59–61

    Google Scholar 

  74. Meyn EE, Corry PM, Fletcher JE (1980) Thermal enhancement of DNA damage in mammalian cells treated with cis-diammine-dichloroplatinum (II). Cancer Res 40:1136–1139

    Google Scholar 

  75. Morgan JE, Bleehen NM (1981) Response of EMT6 multicellular tumour spheroids to hyperthermia and cytotoxic drugs. Br J Cancer 43:384–391

    Google Scholar 

  76. Nussbaum GH (1982) Physical aspects of hyperthermia. Med Phys Monogr 8

  77. Otte J (1984) First clinical results of localized tumorhyperthermia combined with chemotherapy. Eur J Pediatr 141:263

    Google Scholar 

  78. Otte J (1984) Hyperthermie in der Behandlung maligner Tumoren — Biologische Grundlagen und therapeutische Studien. Habilitationsschrift, Lübeck

  79. Otte J, Manz R, Thews G, Vaupel P (1982) Impact of localized microwave hyperthermia on the oxygenation status of malignant tumors. Adv Exp Med Biol 157:49–55

    Google Scholar 

  80. Overgaard J (1976) Combined adriamycin and hyperthermia treatment of a murine mammary carcinoma in vivo. Cancer Res 36:3077–3081

    Google Scholar 

  81. Overgaard J (1977) Effect of hyperthermia on malignant cells in vivo. Cancer 39:2637–2646

    Google Scholar 

  82. Overgaard J (1981) Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo. Br J Cancer 54:245–249

    Google Scholar 

  83. Overgaard J (1982) Interaction between hyperthermia and radiotherapy. Br J Cancer 45:627–628

    Google Scholar 

  84. Overgaard J (1985) Hyperthermic oncology, vols 1 and 2. Taylor & Francis, London

    Google Scholar 

  85. Overgaard J, Nielsen OS (1983) The importance of thermotolerance for the clinical treatment with hyperthermia. Radiother Oncol 1:167–178

    Google Scholar 

  86. Parks LC, Smith GV (1983) Systemic hyperthermia by extracorporal induction: techniques and results. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 407–447

    Google Scholar 

  87. Parks LC, Minaberry D, Smith D, Neely WA (1979) Treatment of far-advanced bronchogenic carcinoma by extracorporally-induced systemic hyperthermia. J Thorac Cardiovasc Surg 78:883–892

    Google Scholar 

  88. Pettigrew R (1975) Cancer therapy by whole body heating. In: Wizenberg M, Robinson JE (eds) International Symposium on Cancer Therapy by Hyperthermia and Radiation. American College of Radiology, Boston

    Google Scholar 

  89. Pettigrew RT, Galt JM, Ludgate CM, Smith AN (1974) Clinical effects of whole-body hyperthermia in advanced malignancy. Br Med J 4:679–682

    Google Scholar 

  90. Pettigrew RT, Ludgate CM, Gee AP, Smith AN (1978) Whole-body hyperthermia combined with chemotherapy in the treatment of advanced human cancer. In: Streffer C (ed) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg. Baltimore, pp 337–339

    Google Scholar 

  91. Philips P, Steward JK, Kumar S (1976) Tumour angiogenesis factor (TAF) in human and animal tumours. Int J Cancer 17:549–558

    Google Scholar 

  92. Rabes B (1979) Proliferative Vorgänge während der Frühstadien der malignen Transformation. Verh Dtsch Ges Pathol 63:18–39

    Google Scholar 

  93. Reinhold H (1979) In vivo observations of tumor blood flow. In: Peterson HI (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow in experimental and human tumors. CRC Press, Boca Raton, pp 115–128

    Google Scholar 

  94. Reinhold HS, Berg-Blok A van den (1981) Enhancement of thermal damage to the microcirculation of “sandwich” tumours by additional treatment. Eur J Cancer Clin Oncol 17:781–795

    Google Scholar 

  95. Rohdenburg GL (1918) Fluctuations in the growth of malignant tumors in man, with special reference to spontaneous recession. J Cancer Res 3:193–225

    Google Scholar 

  96. Samulski TV, Lee ER, Hahn GM (1984) Hyperthermia as a clinical treatment modality. Cancer Treat Rep 68:309–316

    Google Scholar 

  97. Silva V da, Tofilon PJ, Gutin PH, Dewey WC, Buckley N, Deen DF (1985) Comparative study of the effects of hyperthermia and BCNU on BCNU-sensitive and BCNU-resistant 9L rat brain tumor cells. Radiat Res 103:363–372

    Google Scholar 

  98. Song CW, Rhee JG, Levitt SH (1980) Blood flow in normal tissues and tumors during hyperthermia. J Natl Cancer Inst 64:119–124

    Google Scholar 

  99. Song CW, Lokshina A, Rhee JG, Patten M, Levitt SH (1984) Implication of blood flow in hyperthermic treatment of tumors. JEEE Transactions. Biomed Eng 31:9–16

    Google Scholar 

  100. Stehlin JS, Giovanella BC, Ipolyi PD de, Muenz LR, Anderson RF (1975) Results of hyperthermic perfusion for melanoma of the extremities. Surg Gynecol Obstet 140:339–348

    Google Scholar 

  101. Stehlin JS, Giovanella BC, Ipolyi PD de, Anderson RF (1979) Results of eleven years' experience with heated perfusion for melanoma of the extremities. Cancer Res 39:2255–2257

    Google Scholar 

  102. Storm FK (1983) Hyperthermia in cancer therapy. Hall, Boston

    Google Scholar 

  103. Streffer C, Beuningen D van, Dietzel F, Röttinger F, Robinson JE, Scherer E, Seeber S, Trott KR (eds) (1978) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  104. Subjeck JR, Sciandra JJ, Chao CF, Johnson RJ (1982) Heat shock proteins and biological response to hyperthermia. Br J Cancer 45 [Suppl V]:127–131

    Google Scholar 

  105. Subjeck JR, Shyy T, Shen J, Johnson RJ (1983) Association between the mammalian 110,000-dalton heat-shock protein and nucleoli. J Cell Biol 97:1389–1395

    Google Scholar 

  106. Suit HD (1977) Hyperthermic effects on animal tissues. Radiology 123:483–487

    Google Scholar 

  107. Tannock IF (1970) Population kinetics of carcinoma cells, capillary endothelial cells and fibroblasts in a transplanted mouse mammary tumor. Cancer Res 30:2470–2476

    Google Scholar 

  108. Teicher BA, Kowal CD, Kennedy KA, Sartorelli AC (1981) Enhancement by hyperthermia of the in vitro cytotoxicity of mitomycin C toward hypoxic tumor cells. Cancer Res 41:1096–1099

    Google Scholar 

  109. Thrall DE, Gillette EL, Baumann CL (1973) Effect of heat on the C3H mouse mammary adenocarcinoma evaluated in terms of tumor growth. Eur J Cancer 9:871–875

    Google Scholar 

  110. Trott KR (1984) The cellular interpretation of tumour radioresistance. Cancer Treat Rev 11 [Suppl A]:81–83

    Google Scholar 

  111. Tsukeda H, Maekawa H, Izumi S, Nitta K (1981) Effect of heat shock on protein synthesis by normal and malignant human lung cells in tissue culture. Cancer Res 41:5188–5192

    Google Scholar 

  112. Twentyman PR, Morgan JE, Donaldson J (1978) Enhancement by hyperthermia or the effect of BCNU against the EMT6 mouse tumor. Cancer Treat Rep 62:439–443

    Google Scholar 

  113. U R, Noell TK, Woodward KT (1980) Microwave-induced local hyperthermia in combination with radiotherapy of human malignant tumors. Cancer 45:638–646

    Google Scholar 

  114. Urano M, Kahn J (1986) Differential kinetics of thermal resistance (thermotolerance) between murine normal and tumor tissues. Int J Radiat Oncol Biol Phys 12:89–93

    Google Scholar 

  115. Urano M, Rice LC, Montoya V (1982) Studies on fractionated hyperthermia in experimental animal systems. II. Response of murine tumors to two or more doses. Int J Radiat Oncol Biol Phys 8:227–233

    Google Scholar 

  116. Vaupel P, Müller-Klieser W (1982) Interstitieller Raum und Mikromilieu in malignen Tumoren. 6. Jahrestagung der Gesell-schaft für Mikrozirkulation, Munich, 26.–27. 11. 1982

  117. Vaupel P, Ostheimer K, Müller-Klieser W (1980) Circulatory and metabolic response of malignant tumors during localized hyperthermia. J Cancer Res Clin Oncol 98:15–29

    Google Scholar 

  118. Vaupel P, Müller-Klieser W, Otte J, Manz R, Kallinowski P (1983) Blood flow, tissue oxygenation and pH distribution in malignant tumors upon localized hyperthermia. Strahlentherapie 159:73–81

    Google Scholar 

  119. Wallner KE, Li GC (1987) Effect of drug exposure duration and sequencing on hyperthermic potentiation of mitomycin-C and cisplatin. Cancer Res 47:493–495

    Google Scholar 

  120. Wallner KE, Banda M, Li GC (1987) Hyperthermic enhancement of cell killing by mitomycin-C in mitomycin-C resistant Chinese hamster ovary cells. Cancer Res 47:1308–1312

    Google Scholar 

  121. Warren BA (1979) The vascular morphology of tumors. In: Peterson HI (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow in experimental and human tumors. CRC Press, Boca Raton, pp 1–49

    Google Scholar 

  122. Westra A, Dewey W (1971) Variation in sensitivity to heat shock during the cell cycle of Chinese hamster cells in vitro. Int J Radiat Biol 19:467–477

    Google Scholar 

  123. Willnow U, Wild L, Lindner H, Brock D (1987) Ganzkörperhyperthermie und Chemotherapie bei Kindern. Second Dresden Hyperthermia Symposium, Dresden

  124. Wizenberg M, Robinson JE (eds) (1975) Proceedings of the International Symposium on Cancer Therapy by Hyperthermia and Radiation. American College of Radiology, Baltimore

    Google Scholar 

  125. Yerushalmi A (1976) Influence on metastatic spread of whole-body or local tumor hyperthermia. Eur J Cancer 12:455–463

    Google Scholar 

  126. Yerushalmi A (1978) Combined treatment of a solid tumour by local hyperthermia and actinomycin D. Br J Cancer 37:827–832

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otte, J. Hyperthermia in cancer therapy. Eur J Pediatr 147, 560–569 (1988). https://doi.org/10.1007/BF00442463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00442463

Key words

Navigation