Skip to main content
Log in

An electron microscope study of cells in the matrix and intermediate laminae of the cerebral hemisphere of the 45 mm rabbit embryo

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The morphology and intercellular relations of cells in the matrix, lower intermediate, and upper intermediate laminae of the cerebral hemisphere of rabbit embryos was studied with the electron microscope. Models of cells reconstructed from serial sections confirm previous observations made with the Golgi technique. Most cells in the matrix lamina appear to be spongioblasts; there are relatively few neuroblasts and columnar epithelial cells. Neuroblasts predominate in the intermediate lamina. Their short processes are intercalated among axons and spongioblast processes in the lower part. A large process, the preapex, distinguishes nerve cells in the upper part of the intermediate lamina, and its orientation in the direction of movement suggests that it may actively participate in the migration of neuroblasts.

Serial section analysis confirms the fact that mitotic cells in the matrix lamina are spherical and have no processes. Assuming that neuroblasts are incapable of further division, it seems probable that intermitotic germinal cells have the form of spongioblasts and columnar epithelial cells and that they give rise to neuroblasts and other spongioblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Ariëns Kappers, C. U.: On structural laws in the nervous system: the principles of neurobiotaxis. Brain 44, 125–149 (1921).

    Google Scholar 

  • Bellairs, R.: The development of the nervous system in chick embryos, studied by electron microscopy. J. Embryol. exp. Morph. 7, 94–115 (1959).

    Google Scholar 

  • Berry, M., and A. W. Rogers: The migration of neuroblasts in the developing cerebral cortex. J. Anat. (Lond.) 99, 691–709 (1965).

    Google Scholar 

  • Bonné, C.: L'Écorce cérébrale. I. Developpement, morphologie et connexions des cellules nerveuses. Rev. gén. Histol. 2, 291–581 (1907).

    Google Scholar 

  • Caley, D. W., and D. S. Maxwell: An electron microscopic study of neurons during postnatal development of the rat cerebral cortex. J. comp. Neurol. 133, 17–44 (1968).

    Google Scholar 

  • Duncan, D.: Electron microscope study of the embryonic neural tube and notochord. Tex. Rep. Biol. Med. 15, 367–377 (1957).

    Google Scholar 

  • Fujita, H., and S. Fujita: Electron microscopic studies on neuroblast differentiation in the central nervous system of domestic fowl. Z. Zellforsch. 60, 463–478 (1963).

    Google Scholar 

  • —: Electron microscopic studies on the differentiation of the ependymal cells and the glioblast in the spinal cord of domestic fowl. Z. Zellforsch. 64, 262–272 (1964).

    Google Scholar 

  • Fujita, S.: Kinetics of cellular proliferation. Exp. Cell Res. 28, 52–60 (1962).

    Google Scholar 

  • —: The matrix cell and cytogenesis in the developing central nervous system. J. comp. Neurol. 120, 37–42 (1963).

    Google Scholar 

  • Hamburger, V.: The mitotic patterns in the spinal cord of the chick embryo and their relation to histogenetic processes. J. comp. Neurol. 88, 221–283 (1948).

    Google Scholar 

  • Hataï, S.: Observations on the developing neurones of the cerebral cortex of foetal cats. J. comp. Neurol. 12, 199–204 (1902).

    Google Scholar 

  • His, W.: Histogenese und Zusammenhang der Nervenelemente. Verh. X. Int. med. Congr. Berlin 1891, S. 93–114.

  • Huxley, H. E., and G. Zubay: Preferential staining of nucleic acid-containing structures for electron microscopy. J. biophy. biochem. Cytol. 11, 273–296 (1961).

    Google Scholar 

  • Langman, J., R. L. Guerrant, and B. G. Freeman: Behavior of neuro-epithelial cells during closure of the neural tube. J. comp. Neurol. 127, 399–412 (1966).

    Google Scholar 

  • Lyser, K. M.: Early differentiation of motor neuroblasts in the chick embryo as studied by electron microscopy. I. General aspects. Develop. Biol. 10, 433–466 (1964).

    Google Scholar 

  • Meller, K.: Elektronenmikroskopische Befunde zur Differenzierung der Rezeptorzellen und Bipolarzellen der Retina und ihrer synaptischen Verbindungen. Z. Zellforsch. 64, 733–750 (1964).

    Google Scholar 

  • —, W. Breipohl, and P. Glees: Early cytological differentiation in cerebral hemisphere of mice. An electronmicroscopical study. Z. Zellforsch. 72, 525–533 (1966a).

    Google Scholar 

  • —, J. Eschner, and P. Glees: The differentiation of endoplasmic reticulum in developing neurons of the chick spinal cord. Z. Zellforsch. 69, 189–197 (1966b).

    Google Scholar 

  • Millonig, G.: Further observations on a phosphate buffer for osmium solutions in fixation. Int. Congr. Elec. Micr., vol. 5, P-8. New York: Academic Press 1962.

    Google Scholar 

  • Mugnaini, E., and P. F. Forstrønen: Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo. Z. Zellforsch. 77, 115–143 (1967).

    Google Scholar 

  • Paton, S.: The histogenesis of the cellular elements of the cerebral cortex. Johns Hopk. Hosp. Rep. 9, 709–741 (1900).

    Google Scholar 

  • Ramón y Cajal, S.: A quelle époque apparaissent les expansions des cellules nerveuses de la moelle épinière du poulet? Anat. Anz. 5, 609–639 (1890).

    Google Scholar 

  • —: La rétine des vertébrés. Cellule 9, 119–258 (1893).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Sauer, F. C.: The cellular structure of the neural tube. J. comp. Neurol. 63, 13–23 (1935).

    Google Scholar 

  • Sauer, M. E., and B. E. Walker: Autoradiographic study of interkinetic nuclear migration in the neural tube. Proc. Soc. exp. Biol. (N.Y.) 101, 557–560 (1959).

    Google Scholar 

  • Schaper, A.: Die frühesten Differenzierungsvorgänge im Centralnervensystem. Arch. Entwickl.-Mech. Org. 5, 81–132 (1897).

    Google Scholar 

  • Sensenbrenner, M., and P. Mandel: RNA biothesynthesis during differentiation of various cell types of chicken embryo in cerebral hemispheres. Histoautoradiographic study. Z. Zellforsch. 82, 65–81 (1967).

    Google Scholar 

  • Sidman, R. L., I. L. Miale, and N. Feder: Cell proliferation and migration in the primitive ependymal zone; an autoradiographic study of histogenesis in the nervous system. Exp. Neurol. 1, 322–333 (1959).

    Google Scholar 

  • Simard-Duquesne, N., and P. Couillard: Amoeboid movement. II. Research of contractile proteins in Amoeba proteus. Exp. Cell Res. 28, 92–98 (1962).

    Google Scholar 

  • Sotelo, J. R., and O. Trujillo-Cenóz: Electron microscope study of the development of ciliary components of the neural epithelium of the chick embryo. Z. Zellforsch. 49, 1–12 (1958).

    Google Scholar 

  • Stensaas, L. J.: The development of hippocampal and dorsolateral palliai regions of the cerebral hemisphere in fetal rabbits. II. Twenty millimeter stage, neuroblast morphology. J. oomp. Neurol. 129, 71–84 (1967a).

    Google Scholar 

  • —: The development of hippocampal and dorsolateral palliai regions of the cerebral hemisphere in fetal rabbits. III. Twenty-nine millimeter stage, marginal lamina. J. comp. Neurol. 130, 149–162 (1967b).

    Google Scholar 

  • —, and S. S. Stensaas: Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. I. Light microscopy. Z. Zellforsch. 84, 473–489 (1968).

    Google Scholar 

  • Tennyson, V. M., and G. D. Pappas: A electron microscope study of ependymal cells of the fetal, early postnatal and adult rabbit. Z. Zellforsch. 56, 595–618 (1962).

    Google Scholar 

  • Watterson, R. L., P. Veneziano, and A. Bartha: Absence of a true germinal zone in neural tubes of young chick embryos as demonstrated by the colchicine technique. Anat. Rec. 124, 379 (1955).

    Google Scholar 

  • Wechsler, W.: Die Entwicklung der Gefäße und pervivasculären Gewebsräume im Zentralnervensystem von Hühnern. Z. Anat. Entwickl.-Gesch. 124, 367–395 (1965).

    Google Scholar 

  • —: Die Feinstruktur des Neuralrohres und der neuroektodermalen Matrixzellen am Zentralnervensystem von Hühnerembryonen. Z. Zellforsch. 70, 240–268 (1966a).

    Google Scholar 

  • —: Elektronenmikroskopischer Beitrag zur Differenzierung des Ependyms am Rückenmark von Hühnerembryonen. Z. Zellforsch. 74, 423–442 (1966b).

    Google Scholar 

  • —: Elektronenmikroskopischer Beitrag zur Histogenese der weißen Substanz des Rückenmarks von Hühnerembryonen. Z. Zellforsch. 74, 232–251 (1966c).

    Google Scholar 

  • Weiss, P.: In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J. exp. Zool. 68, 393–448 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a postdoctoral fellowship from the United Cerebral Palsy Research and Educational Foundation and a United States National Institutes of Health fellowship No. NB 28,013—Olal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stensaas, L.J., Stensaas, S.S. An electron microscope study of cells in the matrix and intermediate laminae of the cerebral hemisphere of the 45 mm rabbit embryo. Z.Zellforsch 91, 341–365 (1968). https://doi.org/10.1007/BF00440763

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00440763

Keywords

Navigation