Skip to main content
Log in

Both the chloroplast and nuclear genomes of Chlamydomonas reinhardi share homology with Escherichia coli genes for transcriptional and translational components

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Considerable DNA sequence homology can be detected between the Escherichia coli genes coding for translational and transcriptional components and both the chloroplast and nuclear genomes of Chlamydomonas reinhardi. Labeled chloroplast DNA was demonstrated to hybridize to DNA fragments of the transducing phages λfus3 and λspc2 that encode ribosomal proteins of the α and S10 operons. Further, chloroplast DNA probes hybridize to fragments of λrtf d 18 that encode the β and β′ subunits of RNA polymerase. The regions homologous to the ribosomal protein and RNA polymerase genes were located on the chloroplast DNA physical map by probing restriction fragments of chloroplast DNA with phage or plasmid fragments carrying these E. coli genes. Probing nuclear DNA with bacterial gene probes revealed DNA fragments homologous to elongation factor and ribosomal protein genes. Most surprisingly, sequences homologous to the β subunit of RNA polymerase were found not only in chloroplast DNA but in nuclear DNA as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cpDNA:

chloroplast DNA

r-protein:

ribosomal protein

EF:

elongation factor

rRNA:

ribosomal RNA

kb:

kilobase pairs

bp:

base pairs

References

  • An G, Friesen JD (1980a) J Bacteriol 144:904–916 An G, Friesen JD (1980b) Gene 12:33–39

    Google Scholar 

  • Bedbrook JR, Kolodner R (1979) Ann Rev Plant Physiol 30:593–620

    Google Scholar 

  • Bernardi A, Bernardi F (1979) Eur J Biochem 95:391–398

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bolivar F (1978) Gene 4:121–136

    Google Scholar 

  • Boros I, Sain B (1977) Mol Biol Rep 3:451–457

    Google Scholar 

  • Boynton JE, Gillham NW, Lambowitz AM (1980) In: Chambliss G, Craven GR, Davies J, Davies K, Kahan L, Nomura M (eds) Ribosomes. Structure, Function and Genetics. University Press, Baltimore, pp 903–950

    Google Scholar 

  • Breitenberger CA, Graves MC, Spremulli LL (1979) Arch Biochem Biophys 194:265–270

    Google Scholar 

  • Breitenberger CA, Spremulli LL (1980) J Biol Chem 255:9814–9820

    Google Scholar 

  • Bunger, W, Feierabend K (1980) Planta 149:163–169

    Google Scholar 

  • Burton Z, Burgess RR, Lin J, Moore D, Holders S, Gross CA (1981) Nucleic Acids Res 9:2889–2903

    Google Scholar 

  • Ciferri O, DiPasquale G, Tiboni O (1979) Eur J Biochem 102:331–335

    Google Scholar 

  • Denhardt DT (1966) Biochem Biophys Res Comm 23:641–646

    Google Scholar 

  • Edwards K, Kossel H (1981) Nucleic Acids Res 9:2853–2867

    Google Scholar 

  • Ellis RJ, Hartley MR (1971) Nature New Biol (London) 233:193–196

    Google Scholar 

  • Eneas-Filho J, Hartley MR, Mache R (1981) Mol Gen Genet 184:484–488

    Google Scholar 

  • Gillham NW (1978) Organelle Heredity. Raven Press, New York

    Google Scholar 

  • Grant DM, Gillham NW, Boynton JE (1980) Proc Natl Acad Sci USA 77:6067–6071

    Google Scholar 

  • Hudson L, Rossi J, Landy A (1981) Nature (London) 294:422–427

    Google Scholar 

  • Isono K (1980) In: Chambliss G, Craven GR, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes. Structure, Function and Genetics. University Park Press, Baltimore, pp 641–699

    Google Scholar 

  • Jaskunas SR, Lindahl L, Nomura M (1975) Proc Natl Acad Sci USA 72:6–10

    Google Scholar 

  • Jaskunas SR, Fallon AM, Nomura M (1977) J Biol Chem 252:7323–7336

    Google Scholar 

  • Kirschbaum JB, Konrad EB (1973) J Bacteriol 116:517–526

    Google Scholar 

  • Lee JS, An G, Friesen JD, Fiil NP (1981) Cell 25:251–258

    Google Scholar 

  • Lindahl L, Post L, Zengel J, Gilbert SF, Strycharz WA, Nomura M (1977a) J Biol Chem 252:7365–7383

    Google Scholar 

  • Lindahl L, Yamamoto M, Nomura M, Kirschbaum JB, Allet B, Rochaix J-D (1977b) J Mol Biol 109:23–47

    Google Scholar 

  • Malnoe P, Rochaix J-D (1978) Mol Gen Genet 166:269–275

    Google Scholar 

  • Maniatis T, Jeffrey A, Kleid DG (1975) Proc Natl Acad Sci USA 72:1184–1188

    Google Scholar 

  • Matsuda Y, Surzycki SJ (1980) Mol Gen Genet 180:463–474

    Google Scholar 

  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Nomura M, Morgan EA, Jaskunas SR (1977) Ann Rev Genetics 11:297–347

    Google Scholar 

  • Norgaard MV (1981) Anal Biochem 113:34–42

    Google Scholar 

  • O'Farrell PH, Kutter E, Nakanishi M (1980) Mol Gen Genet 179:421–435

    Google Scholar 

  • Orozco EM Jr, Rushlow KE, Dodd JE, Hallick RB (1980) J Biol Chem 255:10997–11003

    Google Scholar 

  • Orozco EM Jr, Hallick RB (1982) J Biol Chem 257:3265–3275

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Rochaix J-D (1978) J Mol Biol 126:597–617

    Google Scholar 

  • Rochaix J-D, Malnoe P (1978) Cell 15:661–670

    Google Scholar 

  • Schneemann R, Surzycki S (1979) Mol Gen Genet 176:95–104

    Google Scholar 

  • Schwarz Z, Kossel H (1980) Nature (London) 283:739–742

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Spremulli L (1982) Arch Biochem Biophys 214:734–741

    Google Scholar 

  • Surzycki SJ (1969) Proc Natl Acad Sci USA 63:1327–1334

    Google Scholar 

  • Surzycki SJ, Goodenough UW, Levine RP, Armstrong JJ (1970) Symp Soc Exp Biol 24:13–37

    Google Scholar 

  • Surzycki SJ, Shellenbarger DL (1976) Proc Natl Acad Sci USA 73:3961–3965

    Google Scholar 

  • Tiboni O, DiPasquale G, Ciferri O (1976) Plant Sci Lett 6:419–429

    Google Scholar 

  • van den Boogaart P, Samallo J, Agsteribbe E (1982) Nature (London) 298:187–189

    Google Scholar 

  • Watson JC, Surzycki SJ (1982) Proc Natl Acad Sci USA 79:2264–2267

    Google Scholar 

  • Wieslander L (1979) Anal Biochem 98:305–309

    Google Scholar 

  • Zasloff M, Ginder GD, Felsenfeld G (1978) Nucleic Acids Res 5:1139–1152

    Google Scholar 

  • Zengel JM, Mueckl D, Lindahl L (1980) Cell 21:523–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, J.C., Surzycki, S.J. Both the chloroplast and nuclear genomes of Chlamydomonas reinhardi share homology with Escherichia coli genes for transcriptional and translational components. Curr Genet 7, 201–210 (1983). https://doi.org/10.1007/BF00434891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00434891

Key words

Navigation