Skip to main content
Log in

Structure of the Aspergillus nidulans pyruvate kinase gene

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The complete nucleotide sequence of the Aspergillus nidulans pyruvate kinase gene, including its flanking sequences, is presented. The gene has a 1,578 by coding sequence that encodes a protein of 526 amino acids; the latter is strongly homologous to the pyruvate kinases found in Saccharomyces cerevisiae (66%) and mammals (53%).

The gene is interrupted by seven introns, three of which are in a conserved position compared to those present in the mammalian pyruvate kinase genes sequenced thus far. A fourth intron within the mononucleotide binding fold domain is in a conserved position with respect to the position of an intron within the NAD+ binding region of maize ADH 1.

The transcription start site has been determined; a major site of transcription was found 80 by before the translation initiation codon. The promoter region of the A. nidulans pyruvate kinase gene contains no direct homologies with the TATA or CCAAT sequences in the expected region (30–70 bp) before the transcription initiation site. However, extended CT-enriched regions are found in the promotor region, similar to what has been observed in genes that are highly expressed in Saccharomyces cerevisiae and filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp :

base pair(s)

NAD :

nicotinamide dinucleotide

ORF :

open reading frame

References

  • Bezares G, Eyzaguirre J, Hinrichs MV, Heinrikson RL, Reardon I, Kemp RG, Latshaw SP, Bazaes S (1987) Arch Biochem Biophys 253:133–137

    Google Scholar 

  • Birnstiel ML, Busslinger M, Strub K (1985) Cell 41:349–359

    Google Scholar 

  • Bornman L, Röschlau, Hess B (1972) Hoppe-Seyler's Z Physiol Chem 353:696

    Google Scholar 

  • Burke RL, Tekamp-Olsen P, Najarian R (1983) J Biol Chem 258:2193–2201

    Google Scholar 

  • Buxton FP,, Gwynne DI, Garven S, Sibley S, Davies RW (1987) Gene 60:255–266

    Google Scholar 

  • Calzone FJ, Britten RJ, Davidson EH (1987) In: Berger SL, Kimmel AR (eds) Methods in enzymology, vol 152. Academic Press, New York, pp 611–632

    Google Scholar 

  • Clements JM, Roberts CF (1986) Gene 44:97–105

    Google Scholar 

  • Cognet M, Lone YC, Vaulont S, Kahn A, Marie J (1987) J Mol Biol 196:11–25

    Google Scholar 

  • Corrick CM, Twomey AP, Hynes MJ (1987) Gene 53:63–71

    Google Scholar 

  • Cottam GL, Hollenberg PF, Coon M (1969) J Biol Chem 244: 1481–1486

    Google Scholar 

  • de Graaff LH, van den Broek HWJ, Visser J (1988) Curr Genet 13:315–321

    Google Scholar 

  • Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn D, Sachs MM, Ferl RJ, Peacock WJ (1984) Nucleic Acid Res 12:3983–4000

    Google Scholar 

  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acid Res 10:2625–2637

    Google Scholar 

  • Engström L, Ekman P, Humble E, Zetterqvist O (1987) In: Boyer PD, Krebs EG (eds) The enzymes, vol XVIII. Academic Press, New York, pp 47–75

    Google Scholar 

  • Fothergill-Gillmore (1986) TIBS 11:47–51

    Google Scholar 

  • Friedenthal M, Roselino E, Passerson S (1973) Eur J Biochem 35:148–158

    Google Scholar 

  • Gilbert W (1986) Science 228:823–824

    Google Scholar 

  • Gwynne DI, Buxton FP, Sibley S, Davies RW, Lockington RA, Scazzocchio C, Sealy-Lewis HM (1987) Gene 51:205–216

    Google Scholar 

  • Hamer JE, Timberlake WE (1987) Mol Cell Biol 7:2352–2359

    Google Scholar 

  • Humble E (1980) Biochem Biophys Acta 626:179–187

    Google Scholar 

  • Inoue H, Noguchi T, Tanaka T (1986) Eur J Biochem 154: 465–469

    Google Scholar 

  • Johnson SC, Bailey T, Becker RR, Cardenas JM (1979) Biochem Biophys Res Commun 90:525–530

    Google Scholar 

  • Kapoor M (1976) Int J Biochem 7:439–443

    Google Scholar 

  • Kester H, Uitzetter JHAA, de Graaff LH, Visser J (1988) Can J Biochem 34:1154–1158

    Google Scholar 

  • Kozak M (1984) Nucleic Acid Res 12:857–872

    Google Scholar 

  • Lonberg N, Gilbert W (1983) Proc Natl Acad Sci USA 80:3661–3665

    Google Scholar 

  • Lonberg N, Gilbert W (1985) Cell 40:81–90

    Google Scholar 

  • Lone YC, Simon M, Kahn A, Marie J (1986) FEBS Lett 195: 97–100

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Maniatis T, Goodburn S, Fischer JA (1987) Science 236:1237–1244

    Google Scholar 

  • Marie J, Simon MP, Dreyfus JC, Kahn A (1981) Nature 292: 70–72

    Google Scholar 

  • McKnight GL, Kato H, Upshall A, Parker MD, Saari G, O'Hara PJ (1985) EMBO J 4:2093–2099

    Google Scholar 

  • McKnight GL, O'Hara PJ, Parker ML (1986) Cell 46:143–147

    Google Scholar 

  • McLauchlan J, Gaffney D, Whitton JL, Clements JB (1985) Nucleic Acid Res 13:1347–1368

    Google Scholar 

  • Meixner-Monori B, Kubicek CP, Rohr M (1984) Can J Microbiol 4:16–22

    Google Scholar 

  • Messing J (1983) Methods Enzymol 101C:20–78

    Google Scholar 

  • Meyers RM, Tilly K, Maniatis T (1986) Science 232:613–618

    Google Scholar 

  • Muirhead H, Clayden DA, Barford D, Lorimer CG, Fothergill-Gilmore LA, Schiltz E, Schmitt W (1986) EMBO J 5:475–481

    Google Scholar 

  • Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE (1985) Mol Gen Genet 199:37–45

    Google Scholar 

  • Noguchi T, Inoue H, Tanaka T (1986) J Biol Chem 261:13807–13812

    Google Scholar 

  • Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T (1987) J Biol Chem 262:14366–14371

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Gene 26:101–106

    Google Scholar 

  • Pickett M, Gwynne DI, Buxton FP, Elliott R, Davies RW, Lockington RA, Scazzocchio C, Sealy-Lewis HM (1987) Gene 51:217–226

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LJ, MacDonald KD, Bufton AWJ (1953) Adv Genet 5:141–238

    Google Scholar 

  • Proudfoot NJ, Brownlee GG (1976) Nature 263:211–214

    Google Scholar 

  • Rambosek J, Leach J (1987) CRC Crit Rev Biotechnol 6:357–393

    Google Scholar 

  • Sanger F, Nickelen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Stuart DI, Levine M, Muirhead H, Stammers DK (1979) J Mol Biol 134:109–142

    Google Scholar 

  • Tani K, Fujii H, Nagata S, Miwa S (1988) Proc Natl Acad Sci USA 85:1892–1795

    Google Scholar 

  • Uitzetter JHAA (1982) PhD thesis. Agricultural University of Wageningen, The Netherlands

  • Upshall A, Gilbert T, Saari G, O'Hara PJ, Weglenski P, Berse B, Miller K, Timberlake WE (1986) Mol Gen Genet 204: 349–354

    Google Scholar 

  • Valentini G, Iadarola P, Somani BL, Malcovati M (1979) Biochem Biophys Acta 570:248–258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Graaff, L., Visser, J. Structure of the Aspergillus nidulans pyruvate kinase gene. Curr Genet 14, 553–560 (1988). https://doi.org/10.1007/BF00434080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00434080

Key words

Navigation