Skip to main content
Log in

Morse families and constrained mechanical systems. Generalized hyperelastic materials

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present work deals with the geometrical desingularization of a well-known asymptotic realization of the ideal holonomic constraints in analytical mechanics. A structure of this kind is extended to the theory of continuous materials—in particular, to elastic materials with internal constraints. By using the same geometrical structure, another aim of this paper can be fulfilled: a new type of generalized hyperelastic material is introduced and some physical examples are discussed. This definition of a generalized hyperelastic material globalizes and unifies the usual definition of a hyperelastic material and its analogue for crystalline solids according to Ericksen and Pitteri. We recall that generalized hyperelastic materials can display a multi-valued strain-stress behaviour, as discussed by Ericksen. Such a behaviour can be used to describe phenomena usually regarded as typical of plasticity.

Sommario

In questo lavoro si considera una desingolarizzazione geometrica di una ben nota realizzazione asintotica dei vincoli lisci olonomi in meccanica analitica. Tale struttura è estesa allla meccanica dei continui, in particolare, al caso dei materiali elastici con vincoli interni. Utilizzando lo stesso ambiente geometrico di quest'ultima costruzione si realizza un altro scopo di questa nota: viene introdotta una nuova definizione di materiale iperelastico in senso generalizzato e sono discussi alcuni esempi fisici noti in letteratura. Questa definizione globalizza e unifica l'usuale definizione di materiale iperelastico e il suo analogo per i solidi cristallini secondo Ericksen e Pitteri. Tali materiali possono manifestare una risposta stress-strain multivoca. Questo comportamento può essere utilizzato per la descrizione di fenomenologie tipiche della plasticità.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RubinH. and UngarP., ‘Motion under a strong constraining force’, Comm. Pure Appl. Math., X (1957) 65.

    Google Scholar 

  2. EbinD. G., ‘The motion of slightly compressible fluids viewed as motion with strong constraining force’, Ann. Math., 105 (1977) 141.

    Google Scholar 

  3. Takens, F., ‘Motion under the influence of a strong constraining force’, Lecture Notes in Math., Springer-Verlag, 1980, p. 424.

  4. BenettinG., GalganiL. and GiorgilliA., ‘Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I’, Comm. Math. Phys., 113 (1987) 87–103.

    Google Scholar 

  5. EricksenJ. L., ‘Nonlinear elasticity of diatomic crystals’, Internat. J. Solids and Structures, 6 (1970) 951.

    Google Scholar 

  6. EricksenJ. L., ‘Multi-valued strain energy functions for crystals’, Internat. J. Solids and Structures, 18 (1982) 913.

    Google Scholar 

  7. PitteriM., ‘On v+1-lattices’, J. Elasticity, 15 (1985) 3.

    Google Scholar 

  8. Abraham, R. and Marsden, J. E., Foundations of Mechanics (2nd edn), Benjamin-Cummings, 1978.

  9. Benenti, S., ‘Symplectic relations in analytical mechanics’, Proc. IUTAMM-ISIMM Sympos. on Modern Developments in Analytical Mechanics, Torino, 1982.

  10. BenentiS., ‘Relazioni simplettiche: la trasformazione di Legendre e la teoria di Hamilton-Jacobi’, Quad. Unione Mat. Italiana, n.33, Pitagora Ed., Bologna, 1988.

    Google Scholar 

  11. Maslov, V. P., ‘Théorie des perturbations et méthodes asymptotiques’, Editions de l'Université de Moscou, 1965 (in Russian). Also: Dunod-Gauthier-Villars, Paris, 1971.

  12. HörmanderL., ‘Fourier integral operators I’, Acta Math. 127 (1971) 79.

    Google Scholar 

  13. Weinstein, A., Lectures on Symplectic Manifolds, CBMS Conf. Series, AMS 29, 1977.

  14. Dieudonné, J., Éléments d'Analyse, Gauthier-Villars, Vol. 3, 1974.

  15. Tulczyjew, W. M., ‘Control of static mechanical systems’, Proc. Dynamical Systems and Microphysics, CISM, Udine, Italy, 1984, p. 359.

  16. TulczyjewW. M., ‘Relations symplectiques et les équations d'Hamilton-Jacobi relativistes’, C. R. Acad. Sci. Paris, 281, série A (1975) 545.

    Google Scholar 

  17. Benenti, S. and Tulczyjew, W. M., ‘The geometrical meaning and globalization of the Hamilton-Jacobi method’, Proc. Differential Geometrical Methods in Mathematical Physics, Aix-en-Provence, Salamanca; Lecture Notes in Math., 836, Springer-Verlag, 1979.

  18. CardinF., ‘On the geometrical Cauchy problem for the Hamilton-Jacobi equation’, Nuovo Cimento B, 104 (1989) 525.

    Google Scholar 

  19. Tulczyjew, W. M., ‘Hamiltonian systems, Lagrangian systems and the Legendre transformation’, Sympos. Math., XIV (1974).

  20. CardinF. and ZanzottoG., ‘On constrained mechanical systems: D'Alembert's and Gauss' principles’, J. Math. Phys., 30(7) (1989) 1473.

    Google Scholar 

  21. Arnold, V. I., Mathematical Methods in Classical Mechanics, Springer-Verlag, 1978.

  22. Gallavotti, G., Meccanica Elementare, Ed. Boringhieri, 1980.

  23. TruesdellC. and NollW., ‘The non-linear field theories of mechanics’, Handbuch der Physik, Springer-Verlag, Berlin, Heidelberg, New York, 1965.

    Google Scholar 

  24. VianelloM., ‘The representation problem for constrained hyperelastic materials’, Arch. Rational Mech. Anal., 111 (1990) 87.

    Google Scholar 

  25. James, R. D., ‘The stability and metastability of quartz’, in: S. Antman et al. (eds), Metastability and Incompletely Posed Problems IMA Vol. Math. Appl., 3, Springer-Verlag, 1987.

  26. MorganA. J. A., ‘Some properties of media defined by constitutive equations in implicit form’, Internat. J. Engng Sci., 4 (1966) 155.

    Google Scholar 

  27. MorganA. J. A., ‘Properties of a class of constitutive equation stated in a nontrivial implicit form’, in: S.Eskinazi (ed.), Modern Developments in the Mechanics of Continua, Academic Press, New York, London, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardin, F. Morse families and constrained mechanical systems. Generalized hyperelastic materials. Meccanica 26, 161–167 (1991). https://doi.org/10.1007/BF00429884

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429884

Key words

Navigation