Skip to main content
Log in

CO2 dissociation curves of oxygenated whole blood obtained at rest and in exercise

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

In vitro CO2 dissociation curves for oxygenated whole blood were determined in 19 healthy male subjects at rest and during submaximal and maximal bicycle work. Hemoglobin concentration and blood lactate increased with increasing work load and accordingly buffer value of the whole blood increased while bicarbonate and Base Excess (BE) decreased, resulting in a downward shift of the CO2 dissociation curve during exercise. Despite the marked increase in buffer values of the blood, the slopes of the CO2 dissociation curves during exercise were found to be about the same as those obtained at rest. It was inferred that the increasing effect of increased buffer value, on the dissociation slope, was essentially compensated by the decreasing effect of diminished bicarbonate content. The advantages of this relatively constant CO2 dissociation slope for the indirect measurement of cardiac output by the Fick principle are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • åstrand, P. O., Rodahl, K.: Textbook of work physiology. New York: McGrawhill 1970

    Google Scholar 

  • Astrup, P.: Ultra-micro-method for determining pH, PCO2 and standard bicarbonate in capillary blood. In: Symposium on pH and blood gas measurement (R. F. Woolmer, ed.), pp. 8. London: Churchhill 1959

    Google Scholar 

  • Austin, W. H.: Acid-base balance. A review of current approaches and techniques. Amer. Heart J. 69, 691–700 (1965)

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or, O., Shephard, R. J., Allen, C. L.: Cardiac output of 10- to 13-year-old boys and girls during submaximal exercise. J. appl. Physiol. 30, 219–223 (1971)

    PubMed  CAS  Google Scholar 

  • Barr, D. P., Himwich, H. F., Green, R. P.: Studies in the physiology of muscular exercise. I. Changes in acid-base equilibrium following short periods of vigorous muscular exercise. J. biol. Chem. 55, 495–515 (1923)

    CAS  Google Scholar 

  • Christiansen, J., Douglas, C. G., Haldane, J. S.: The absorption and dissociation of carbon dioxide by human blood. J. Physiol. (Lond.) 48, 244–271 (1914)

    CAS  Google Scholar 

  • Clausen, J. P., Larsen, O. A., Trap-Jensen, J.: Cardiac output in middle-aged patients determined with CO2 rebreathing method. J. appl. Physiol. 28, 337–342 (1970)

    PubMed  CAS  Google Scholar 

  • Cruz, J. C., Rahn, H., Farhi, L. E.: Mixed venous PO2, PCO2, pH, and cardiac output during exercise in trained subjects. J. appl. Physiol. 27, 431–434 (1969)

    PubMed  CAS  Google Scholar 

  • Defares, J. G.: Determination of P¯vCO2 from the exponential CO2 rise during rebreathing. J. appl. Physiol. 13, 159–164 (1958)

    PubMed  CAS  Google Scholar 

  • Defares, J. G., Wise, J. G. M., Duyff, J. W.: New indirect Fick procedure for determination of the cardiac output. Nature (Lond.) 192, 760–761 (1961)

    Article  Google Scholar 

  • Denison, D., Edwards, R. H., Jones, G., Pope, H.: Estimates of the CO2 pressures in systemic arterial blood during rebreathing on exercise. Resp. Physiol. 11, 186–196 (1971)

    Article  CAS  Google Scholar 

  • Douglas, C. G., Haldane, J. S.: The regulation of the general circulation rate in man. J. Physiol. (Lond.) 56, 69–100 (1922)

    CAS  Google Scholar 

  • Ferguson, R. J., Faulkner, J. A., Julius, S., Conway, J.: Comparison of cardiac output by CO2 rebreathing and dye-dilution methods. J. appl. Physiol. 25, 450–454 (1968)

    Google Scholar 

  • Fitzsimons, E. J., Sendroy, J.: Distribution of electrolytes in human blood. J. biol. Chem. 236, 1595–1601 (1961)

    CAS  Google Scholar 

  • Geppert, J., Zuntz, N.: über die Regulation der Atmung. Arch. ges. Physiol. 42, 189–245 (1888)

    Article  Google Scholar 

  • Godfrey, S., Katzenelson, R., Wolf, E.: Gas to blood PCO2 differences during rebreathing in children and adults. Resp. Physiol. 13, 274–282 (1971)

    Article  CAS  Google Scholar 

  • Haggard, H. W., Henderson, Y.: Hemato-respiratory functions. J. biol. Chem. 39, 163–201 (1919)

    CAS  Google Scholar 

  • Jernerus, R., Lundin, G., Thomson, D.: Cardiac output in healthy subjects determined with a CO2 rebreathing method. Acta physiol. scand. 59, 390–399 (1963)

    Article  PubMed  CAS  Google Scholar 

  • Jones, N. L., Campbell, E. J. M., Edwards, R. H., Wilkoff, W. G.: Alveolar-to-blood PCO2 difference during rebreathing in exercise. J. appl. Physiol. 27, 356–369 (1969)

    PubMed  CAS  Google Scholar 

  • Jones, N. L., Robertson, D. G., Kane, J. W., Campbell, E. J. M.: Effect of PCO2 level on alveolar-arterial PCO2 difference during rebreathing J. appl. Physiol. 32, 782–787 (1972)

    PubMed  CAS  Google Scholar 

  • Keys, A., Hall, F. G., Barron, E. S. G.: The position of the oxygen dissociation curve of human blood at high altitude. Amer. J. Physiol. 115, 292–307 (1936)

    CAS  Google Scholar 

  • Klausen, K.: Comparison of CO2 rebreathing and acetylene methods for cardiac output. J. appl. Physiol. 20, 763–766 (1965)

    PubMed  CAS  Google Scholar 

  • Magel, J. R., Andersen, K. L.: Cardiac output in muscular exercise measured by the CO2 rebreathing procedure. In: Ergometry in cardiology (H. Denolin, K. Konig, R. Messin, eds.), pp. 147–157. Mannheim: Boehringer 1968

    Google Scholar 

  • McHardy, G. J. R.: The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin. Sci. 32, 299–309 (1967)

    PubMed  CAS  Google Scholar 

  • Mithoefer, J. G., Bossman, O. G., Thibeault, D. W.: The effect of metabolic acidosis on the CO2 titration curve. Anesthesiology 30, 395–400 (1969)

    PubMed  CAS  Google Scholar 

  • Miyamura, M., Honda, Y.: Oxygen intake and cardiac output during maximal treadmill and bicycle exercise. J. appl. Physiol. 32, 185–188 (1972)

    Google Scholar 

  • Miyamura, M., Honda, Y.: Maximum cardiac output related to sex and age. Jap. J. Physiol. 23, 645–656 (1973)

    CAS  Google Scholar 

  • Muiesan, G., Sorbini, C. A., Solinas, E., Grassi, V., Casucci, G., Petz, E.: Comparison of CO2-rebreathing and direct Fick methods for determining cardiac output. J. appl. Physiol. 24, 424–429 (1968)

    PubMed  CAS  Google Scholar 

  • Nunn, J. F.: Applied respiratory physiology with special reference to anaesthesia, pp. 291–292. London: Butterworths 1969

    Google Scholar 

  • Osnes, J. B., Hermansen, L.: Acid-base balance after maximal exercise of short duration. J. appl. Physiol. 32, 59–63 (1972)

    PubMed  CAS  Google Scholar 

  • Peter, J. P., Eisenman, A. J., Bulger, H. A.: Studies of the carbon dioxide absorption curve of human blood. II. The nature of the curve representing the relation of pH to BHCO3. J. biol. Chem. 55, 709–716 (1923)

    Google Scholar 

  • Roos, A., Thomas, L. J.: The in-vitro and in-vivo carbon dioxide dissociation curves of true plasma. A theoretical analysis. Anesthesiology 28, 1048–1063 (1967)

    PubMed  CAS  Google Scholar 

  • Root, R. W.: Blood CO2 absorption as function of CO2 pressure. In: Handbook of respiration (D. S. Dittmer, R. M. Grebe, eds.), pp. 65. Philadelphia and London: Saunders 1958

    Google Scholar 

  • Siggaard-Andersen, O.: Titratable acid or base of body fluid. In: Symposium of current concepts of acid-base measurement. Ann. N.Y. Acad. Sci. 133, 41–58 (1966)

    PubMed  CAS  Google Scholar 

  • Siggaard-Andersen, O.: An acid-base chart for arterial blood with normal and pathological reference areas. Scand. J. clin. Lab. Invest. 27, 239–245 (1971)

    PubMed  CAS  Google Scholar 

  • Steiner, C. A., Held, D. R.: On the interpretation of the δ(HCO 3 )/δpH ratio in respiratory acid-base disturbances. Resp. Physiol. 12, 17–24 (1971)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamura, M., Honda, Y. CO2 dissociation curves of oxygenated whole blood obtained at rest and in exercise. Europ. J. Appl. Physiol. 39, 37–45 (1978). https://doi.org/10.1007/BF00429677

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429677

Key words

Navigation