Skip to main content
Log in

Distribution of plastocyanin and soluble plastidic cytochrome c in various classes of algae

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Several eukaryotic algae belonging to the main taxonomic classes have been cultured autotrophically in liquid medium supplemented with or depleted of copper to assay their ability to form plastocyanin or exchange it against plastidic cytochrome c-553. Most Chlorophyceae are able to substitute cytochrome c-533 for plastocyanin with some exceptions like Haematococcus or Dunaliella, which can only synthesize plastocyanin. Also within the Chlorella group, about half of the 28 strains assayed cannot synthesize cytochrome c-553 under copper deficiency. Species of Chrysophyceae, Xanthophyceae, and Rhodophyceae, on the other hand, cannot synthesize plastocyanin even when a comparatively high copper concentration (10μM) is available.

Serological cross-reactions of various plastocyanincontaining Chlorella homogenates against an antibody towards Scenedesmus plastocyanin exhibit a pattern which cannot be taxonomically used at the moment.

Including previous data on blue-green algae, it appears that, in the course of evolution, cytochrome c-553 dominates in the older species. In the Chlorophyceae, it is mutually exchangeable against plastocyanin which becomes the only electron donor to P700 in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baszyński T, Ruszkowkska M, Król M, Tukendorf A, Wolińska D (1978) The effect of copper deficiency on the photosynthetic apparatus of higher plants. Z Pflanzenphysiol 89:207–216

    Google Scholar 

  • Böhme H (1978) Reactions of antibodies against ferredoxin, ferredoxin-NADP+ reductase, and plastocyanin with spinach chloroplasts. Eur J Biochem 84:87–93

    Google Scholar 

  • Bohner H, Böger P (1978) Reciprocal formation of cytochrome c-553 and plastocyanin in Scenedesmus. FEBS Lett 85:337–339

    Google Scholar 

  • Bohner H, Merkle H, Kroneck P, Böger P (1980) High variability of the electron carrier plastocyanin in microalgae. Eur J Biochem 105:603–609

    Google Scholar 

  • Crofts AR, Wood PN (1978) Photosynthetic electron transport chains of plants and bacteria and their role as proton pumps. In: Sanadi DR, Vernon LP (eds) Current topics in bioenergic, vol 7. Academic Press, New York San Francisco London, pp 175–224

    Google Scholar 

  • Ehami J, Fukuda J (1975) Mechanisms of the acido- and thermophily of Cyanidium caldarium Geitler. I. Effects of temperature, pH and light intensity on the photosynthetic oxygen evolution of intact and treated cells. Plant Cell Physiol 16:211–220

    Google Scholar 

  • Fott B, Lochhead R, Clémençon H (1975) Taxonomie der Arten Chlorella ultrasquamata Clém. et Fott and Chlorella fusca Shih. et Krauss. Arch Protistenk 117:288–296

    Google Scholar 

  • Hegewald E, Schnepf E (1979) Geschichte und Stand der Systematik der Grünalgengattung Scenedesmus. Schweiz Z Hydrobiol 40:320–343

    Google Scholar 

  • Hoogenhout H, Amesz J (1965) Growth rates of photosynthetic microorganisms in laboratory cultures. Arch Mikrobiol 50:10–25

    Google Scholar 

  • Kerfin W, Kessler E (1978) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XI. DNA hybridization. Arch Microbiol 116:97–103

    Google Scholar 

  • Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst Evol 125:129–138

    Google Scholar 

  • Kessler E (1978) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XII. Starch hydrolysis and a key for the identification of 13 species. Arch Microbiol 119:13–16

    Google Scholar 

  • Kessler E (1982) Chemotaxonomy in the Chlorococcales. In: Round FE, Chapman DJ (eds) Progress in physiological research, vol. I. Elsevier Biomedical Press, Amsterdam New York Oxford, pp 111–135

    Google Scholar 

  • Kessler E, Czygan FC (1970) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. IV. Verwertung organischer Stickstoffverbindungen. Arch Microbiol 70:211–216

    Google Scholar 

  • Kessler E, Zweier I (1971) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. V. Die auxotrophen und mesotrophen Arten. Arch Microbiol 79:44–48

    Google Scholar 

  • Kümmel H, Kessler E (1980) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XIII. Serological studies. Arch Microbiol 126:15–19

    Google Scholar 

  • Kunert KJ, Böger P (1975) Absence of plastocyanin in the alga Bumilleriopsis filiformis and its replacement by cytochrome c-553. Z Naturforsch 30c:190–200

    Google Scholar 

  • Sandmann G, Böger P (1980a) Physiological factors determining formation of plastocyanin and cytochrome c-553 in Scenedesmus. Planta (Berlin) 147:330–334

    Google Scholar 

  • Sandmann G, Böger P (1980b) Copper-induced exchange of plastocyanin and cytochrome c-553 in cultures of Anabaena variabilis and Plectonema boryanum. Plant Sci Lett 17:417–424

    Google Scholar 

  • Sandmann G, Böger P (1981a) Plastocyanin and cytochrome c-553, two different electron donors to photosystem I in algae. In: Akoyunoglou G (ed) Proc 5th Int Congr Photosynthesis, vol II. Balaban International Science Services, Philadelphia, pp 623–632

    Google Scholar 

  • Sandmann G, Böger P (1981b) Influence of light on plastocyanin formation in the alga Scenedesmus acutus. Photosynth Res 2:281–289

    Google Scholar 

  • Sandmann G, Böger P (1983) The enzymological function of heavy metals and their role in electron transfer processes of plants. In: Läuchli A, Bielesky RL (eds) Encyclopedia of plant physiology: Inorganic plant nutrition, vol 12. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Starr RC (1978) The Culture Collection of Algae at the University of Texas at Austin. J Phycol 14:47–100

    Google Scholar 

  • Visser JWM, Amesz J, van Gelder BF (1974) EPR signals of oxidized plastocyanin in intact algae. Biochim Biophys Acta 333:279–287

    Google Scholar 

  • Wildner FG, Hauska G (1974) Localization of the reaction site of cytochrome c-553 in chloroplasts from Euglena gracilis. Arch Biochem Biophys 164:127–135

    Google Scholar 

  • Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Eur J Biochem 87:9–19

    Google Scholar 

  • Yoshizaki F, Sugimura Y, Shimokoriyama M (1981) Purification, crystallization, and properties of plastocyanin from a green alga, Enteromorpha prolifera. J Biochem 89:1533–1539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandmann, G., Reck, H., Kessler, E. et al. Distribution of plastocyanin and soluble plastidic cytochrome c in various classes of algae. Arch. Microbiol. 134, 23–27 (1983). https://doi.org/10.1007/BF00429401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429401

Key words

Navigation