Skip to main content
Log in

Role of silicon in diatom metabolism

VIII. Cyclic AMP and cyclic GMP in synchronized cultures of Cylindrotheca fusiformis

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Levels of the cyclic nucleotides, cAMP and cGMP, were determined in four species of pennate diatoms; changes in their levels and ratios were monitored in silicon-starved and light-dark synchronized cultures of Cylindrotheca fusiformis. Content of both cAMP and cGMP changed during the cell cycles: when silicate was added to starved cultures, cAMP, cGMP and DNA levels rose rapidly; cAMP and cGMP declined before DNA synthesis was complete and continued to fall during the events leading to cell separation. In unstarved synchronies, net synthesis of DNA continued until cell separation; 1 h before cell separation cAMP levels fell while those of cGMP rose. The results support the proposal that cAMP and cGMP may play a part in the process of cell division in the diatom, possibly involving silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amrhein, N.: Evidence against the occurrence of adenosine-3′:5′-cyclic monophosphate in higher plants. Planta (Berl.) 118, 241–258 (1974)

    Google Scholar 

  • Amrhein, N., Filner, P.: Adenosine 3′:5′-cyclic monophosphate in Chlamydomonas reinhardtii: isolation and characterization. Proc. nat. Acad. Sci. (Wash.) 70, 1099–1103 (1973)

    Google Scholar 

  • Bernlohr, R. W., Haddox, M. K., Goldberg, N. D.: Cyclic guanosine 3′:5′-monophosphate in Escherichia coli and Bacillus licheniformis. J. biol. Chem. 249, 4329–4331 (1974)

    Google Scholar 

  • Bianco, J., Bullard, C.: AMP cyclique et germinations des semences de laitue “Grand Rapid”: interactions avec gibberellines et acid abscissique. Z. Pflanzenphysiol. 74, 160–167 (1974)

    Google Scholar 

  • Bressan, R. A., Ross, C. W.: Attempts to detect cyclic adenosine-3′:5′-monophosphate in higher plants by three assay methods. Plant Physiol. 57, 29–37 (1976)

    Google Scholar 

  • Burger, M. M., Bombik, B. N., Breckenridge, B. McL., Sheppard, J. R.: Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nature New Biol. 239, 161–163 (1972)

    Google Scholar 

  • Darley, W. M.: Silicon requirements for growth and macromolecular synthesis in synchronized cultures of the diatoms Navicula pelliculosa (Brébisson) Hilse and Cylindrotheca fusiformis Reimann and Lewin. Ph. D. Thesis, Univ. Calif. San Diego (1969)

  • Darley, W. M., Volcani, B. E.: Role of silicon in diatom metabolism A silicon requirement for DNA synthesis in the diatom Cyclindrotheca fusiformis. Exp. Cell Res. 58, 334–342 (1969)

    Google Scholar 

  • Darley, W. M., Volcani, B. E.: Synchronized cultures: diatoms. In: Methods in enzymology, Vol. 23, pt. A (A. San Pietro, ed.), pp. 85–96. New York: Academic Press 1971

    Google Scholar 

  • Gilman, A. G.: A protein binding assay for adenosine 3′:5′-cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 67, 305–312 (1970)

    Google Scholar 

  • Goldberg, N. D., O'Dea, R. F., Haddox, M. K.: Cyclic GMP. In: Advances in cyclic nucleotide research, Vol. 3 (P. G. Greengard, G. A. Robison, eds.), pp. 155–223. New York: Raven Press 1973

    Google Scholar 

  • Handa, A. K., Johri, M. M.: Cell differentiation by 3′:5′-cyclic AMP in a lower plant. Nature (Lond.) 259, 480–482 (1976)

    Google Scholar 

  • Holm-Hansen, O., Sutcliff, W. H., Sharp, J.: Measurement of DNA in the ocean and its ecological significance. Limnol. Oceanogr. 13, 507–514 (1968)

    Google Scholar 

  • Kates, M., Volcani, B. E.: Lipid components of diatoms. Biochim. biophys. Acta (Amst.) 116, 264–278 (1966)

    Google Scholar 

  • Keirns, J. J., Carritt, B., Freeman, J., Eisenstadt, J. M., Bitensky, M. W.: Adenosine 3:5′ cyclic monophosphate in Euglena gracilis. Life Sci. 13, 287–302 (1973)

    Google Scholar 

  • Kuo, J.-F., Greengard, P.: An assay method for cyclic AMP and cyclic GMP based upon their abilities to activate cyclic AMP-dependent and cyclic GMP-dependent protein kinases. In: Advances in cyclic nucleotide research, Vol. 2 (P. G. Greengard, G. A. Robison, R. Paoletti, eds.), pp. 41–50. New York: Raven Press 1972

    Google Scholar 

  • Kurn, N., Shapiro, L.: Regulation of the Caulobacter cell cycle. In: Current topics in cellular regulation, Vol.9 (B. L. Horecker, E. R. Stadtman, eds.), pp. 41–64. New York: Academic Press 1975

    Google Scholar 

  • Larsen, A. F., Sypherd, P. S.: Cyclic adenosine 3′,5′-monophosphate and morphogenesis in Mucor racemosus. J. Bact. 117, 432–438 (1974)

    Google Scholar 

  • Lewin, J. C., Reimann, B. E., Busby, W. F., Volcani, B. E.: Silica shell formation in synchronously dividing diatoms. In: Cell synchrony studies in biosynthetic regulation (I. L. Cameron, G. M. Padilla, eds.), pp. 169–188. New York: Academic Press 1966

    Google Scholar 

  • Lin, P. P.-C.: Cyclic nucleotides in higher plants? In: Advances in cyclic nucleotide research, Vol. 4 (P. G. Greengard, G. A. Robison, eds.), pp. 439–461. New York: Raven Press 1974

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Ownby, J. D., Ross, C. W., Key, J. L.: Studies on the presence of adenosine cyclic 3′:5′-monophosphate in oat coleoptiles. Plant Physiol. 55, 346–351 (1975)

    Google Scholar 

  • Pastan, I. H., Johnson, G. S., Anderson, W. B.: Role of cyclic nucleotides in growth control. Ann. Rev. Biochem. 44, 491–522 (1975)

    Google Scholar 

  • Paul, J. S., Volcani, B. E.: Photorespiration in diatoms. IV. Two pathways of glycolate metabolism in synchronized cultures of Cylindrotheca fusiformis. Arch. Microbiol. 110, 247–252 (1976)

    Google Scholar 

  • Robertson, A., Grutsch, J.: The role of cyclic AMP in slime mold development. Life Sci. 15, 1031–1043 (1974)

    Google Scholar 

  • Salomon, Y., Londos, C., Rodbell, M.: A highly sensitive adenylate cyclase assay. Analyt. Biochem. 58, 541–548 (1974)

    Google Scholar 

  • Scott, W. A., Solomon, B.: Adenosine 3′:5′-cyclic monophosphate and morphology in Neurospora crassa: drug induced alterations. J. Bact. 122, 454–463 (1975)

    Google Scholar 

  • Silverman, P. M., Epstein, P. M.: Cyclic nucleotide metabolism coupled to cytodifferentiation of Blastocladiella emersonii. Proc. nat. Acad. Sci. (Wash.) 72, 442–446 (1975)

    Google Scholar 

  • Steiner, A. L., Wehmann, R. E., Parker, C. W., Kipnis, D. M.: Radioimmunoassay for the measurement of cyclic nucleotides. In: Advances in cyclic nucleotide research, Vol.2 (P. G. Greengard, G. A. Robison, R. Paoletti, eds.), pp. 51–61. New York: Raven Press 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borowitzka, L.J., Volcani, B.E. Role of silicon in diatom metabolism. Arch. Microbiol. 112, 147–152 (1977). https://doi.org/10.1007/BF00429327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429327

Key words

Navigation