Skip to main content
Log in

Molecular genetic evidence for the transfer of Oerskovia species into the genus Cellulomonas

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A close genetic relationship among strains of Oerskovia turbata, O. xanthineolytica and various coryneforms is indicated by DNA-DNA reassociation studies. O. xanthineolytica shares high homology values (over 60%) with Cellulomonas cartae, Nocardia cellulans, Brevibacterium fermentans and Corynebacterium manihot. O. turbata and other cellulomonads show lower DNA homology values (20–25%) which are still high enough, however, to indicate a relationship at the genus level. Based on these data and supported by comparative analysis of the ribosomal 16 S RNA and the similarity of peptidoglycan types, the transfer of Oerskovia species into the genus Cellulomonas is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergey DH, Breed RS, Hammer RW, Harrison FC, Muntoon FM (1923) Bergey's Manual of Determinative Bacteriology, 1st ed. The Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Bousfield IJ (1972) A taxonomic study of some coryneform bacteria. J Gen Microbiol 71:441–455

    Google Scholar 

  • Burton K (1968) Determination of DNA concentration with diphenylamine. In: Methods in enzymology, Vol XII, B 163–166

  • Bradley SG (1973) Relationships among mycobacteria and nocardiae based upon deoxyribonucleic acid reassociation. J Bacteriol 113:645–651

    Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE (1979) Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 110:127–136

    Google Scholar 

  • Crombach WHJ (1978) DNA base ratios and hybridisation studies of coryneform bacteria, Mycobacteria and Nocardiae. In: Callely AG, Bousfield IJ (eds) Coryneform bacteria. Academic Press, p 161–179

  • Cummins CS (1962) Chemical composition and antigenic structure of cell walls of Corynebacterium, Mycobacterium, Nocardia, Actinomyces and Arthrobacter. J Gen Microbiol 28:35–50

    Google Scholar 

  • Darby KG, Jones AS, Kennedy JF, Walker RT (1970) Isolation and analysis of the nucleic acids and polysaccharides from Clostridium welchii. J Bact 103:159–165

    Google Scholar 

  • Denhardt DT (1966) A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 23:641–646

    Google Scholar 

  • Farina G, Bradley SG (1970) Reassociation of deoxyribonucleic acids from Actinoplanes and other Actinomycetes. J Bacteriol 102:30–35

    Google Scholar 

  • Fiedler F, Schleifer KH, Cziharz B, Interschick E, Kandler O (1970) Murein types in Arthrobacter, Brevibacteria, Corynebacteria and Microbacteria. Publ Fac Sci Univ J E Purkyne Brno 47:111–122

    Google Scholar 

  • Fiedler F, Kandler O (1973) Die Mureintypen der Gattung Cellulomonas. Bergey et al. Arch Mikrobiol 89:41–50

    Google Scholar 

  • Frank-Kamenetskii MD (1971) Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution. Biopolymers 10:2673

    Google Scholar 

  • Gillespie D, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12:829–842

    Google Scholar 

  • Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33–80

    Google Scholar 

  • Goodfellow M, Minnikin DE (1977) Nocardioform bacteria. Ann Rev Microbiol 31:159–180

    Google Scholar 

  • Johnson JL (1973) Use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int J Syst Bacteriol 23:359–375

    Google Scholar 

  • Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J Gen Microbiol 87:52–96

    Google Scholar 

  • Jones LA, Bradley SG (1964) Phenetic classification of actinomycetes. Dev Ind Microbiol 5:267–272

    Google Scholar 

  • Keddie RM, Cure L (1977) The cell wall composition and distribution of free mycolic acid in named strains of coryneform bacteria and in isolates from various natural sources. J Appl Bacteriol 42:229–252

    Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Google Scholar 

  • Lechevalier MP, Lechevalier H, Horan AC (1973) Chemical characteristics and classification of nocardiae. Can J Microbiol 19:965–972

    Google Scholar 

  • marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Marmur J, Doty P (1961) Thermal renaturation of deoxyribonucleic acids. J Mol Biol 3:208–218

    Google Scholar 

  • McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295

    Google Scholar 

  • Meyer SA, Schleifer KH (1978) Deoxyribonucleic acid reassociation in the classification of coagulase-positive staphylococci. Arch Microbiol 117:183–188

    Google Scholar 

  • Minnikin DE, Goodfellow M, Collins MD (1978a) Lipid composition in the classification of coryneform and related taxa. In: Bousfield IJ, Callely AG (eds) Coryneform bacteria. Academic Press, New York, pp 85–160

    Google Scholar 

  • Minnikin DE, Goodfellow M, Alshamaony L (1978b) Mycolic acids in the classification of nocardioform bacteria. In: Modarski M, Kurylowicz W, Jeljaszwicz J (eds) Proceedings of the international symposium on Nocardia and Streptomyces. Fischer, Stuttgart, pp 63–66

    Google Scholar 

  • Minnikin DE, Collins MD, Goodfellow M (1978c) Menachinone patterns in the classification of nocardioform and related bacteria. In: Modarski M, Kurylowicz W, Jeljaszwicz J (eds) Proceedings of the International Symposium on Nocardia and Streptomyces. Fischer, Stuttgart, pp 85–90

    Google Scholar 

  • Prauser H, Lechevalier MP, Lechevalier H (1970) Description of Oerskovia gen. n. to harbor Øerskov's motile Nocardia. Appl. Microbiol 19:534

    Google Scholar 

  • Rogosa M, Cummins CS, Lelliot RA, Keddie RM (1974) Actinomycetes and related organisms. In: Buchanan RE, Gibbons NE (eds) Bergey's Manual of Determinative Bacteriology, 8th ed. The Williams and Wilkins Co., Baltimore, pp 559–861

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    Google Scholar 

  • Schleifer KH, Kandler O (1967) Zur chemischen Zusammensetzung der Zellwände der Streptokokken. I. Zur Aminosäuresequenz des Mureins von Str. thermophilus und Str. faecalis. Arch Microbiol 57:335–364

    Google Scholar 

  • Seidl PH, Faller AH, Loider R, Schleifer KH (1980) Peptidoglycan types and cytochrome patterns of strains of Oerskovia turbata and O. xanthineolytica. Arch Microbiol 127:173–178

    Google Scholar 

  • Stackebrandt E, Fiedler F (1979) DNA-DNA homology studies among strains of Arthrobacter and Brevibacterium. Arch Microbiol 120:289–295

    Google Scholar 

  • Stackebrandt E, Fiedler F, Kandler O (1978) Peptidoglycan type and cell wall polysaccharide composition of Cellulomonas cartalyticum and some coryneform organisms. Arch Microbiol 117:115–118

    Google Scholar 

  • Stackebrandt E, Kandler O (1979) Taxonomy of the genus Cellulomonas, based on phenotypic characters and deoxyribonucleic acid homology, and proposal of seven neotype strains. Int J Syst Bacteriol 29:273–282

    Google Scholar 

  • Stackebrandt E, Woese CR (1979) A phylogenetic dissection of the family Micrococcaceae. Curr Microbiol 2:317–322

    Google Scholar 

  • Stackebrandt E, Lewis BJ, Woese CR (1980) The phylogenetic structure of the coryneform group of bacteria. Zbl Bakt I Abt Orig C 1 137–149

    Google Scholar 

  • Steigerwalt AG, Fanning GR, Fife-Asbury MA, Brenner DJ (1975) DNA relatedness among species of Enterobacter and Serratia. Can. J. Microbiol 22:441–455

    Google Scholar 

  • Sukapure RS, Lechevalier MP, Reber H, Higgins MC, Lechevalier H, Prauser H (1970) Motile nocardoid Actinomycetales. Appl Microbiol 19:527–533

    Google Scholar 

  • Tewfik EM, Bradley SG (1967) Characterisation of deoxyribonucleic acids from streptomycetes and nocardiae. J Bacteriol 94:1994–2000

    Google Scholar 

  • Van Niel CB (1946) The classification and natural relationships of bacteria. Cold Spring Harbor Symp Quant Biol 11:285–301

    Google Scholar 

  • Woese SR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain. The primary kingdoms. Proc Natl Acad Sci USA (Wash) 74:5088–5090

    Google Scholar 

  • Yamada Y, Inouye G, Tahara Y, Kondo K (1976) The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms. J Gen Appl Microbiol 22:203–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is respectively dedicated to our teacher and mentor, Professor Dr. O. Kandler, on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stackebrandt, E., Häringer, M. & Schleifer, KH. Molecular genetic evidence for the transfer of Oerskovia species into the genus Cellulomonas . Arch. Microbiol. 127, 179–185 (1980). https://doi.org/10.1007/BF00427191

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00427191

Key words

Navigation