Skip to main content
Log in

On optimum design of structures and materials

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A survey of problems of optimum design of structures and materials is presented with the main emphasis on fundamental aspects and on current methods and capabilities for topology and shape optimization.

The methods are selected from conditions of versatility and suitability for integration into an engineering design optimization system which realizes the design process as an iterative solution procedure of a multicriterion optimization problem based on the concept of integration of finite element analysis, sensitivity analysis, and optimization by mathematical programming.

A picture of current possibilities and the present status of the field is given through a number of examples.

Sommario

Si passano in rassegna vari problemi di progetto ottimale di strutture e materiali, ponendo in particolare luce gli aspetti di base ed i più attuali procedimenti e strumenti per l'ottimizzazione della topologia e della forma.

I procedimenti presentati sono scelti tra quelli che possono essere integrati in un sistema di ottimizzazione che realizzi il processo della progettazione ingegneristica come una procedura di soluzione per successive approssimazioni di un problema di ottimizzazione multicriterio, basato sull'integrazione dell'analisi ad elementi finiti, analisi di sensibilità e ottimizzazione per mezzo della programmazione numerica.

Si presentano infine alcuni esempi volti a dare una panoramica delle attuali possibilità dell'ottimizzazione strutturale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, R.F., ‘An isotropic three-dimensional structure with Poisson's ratio = -1’, J. Elasticity, 15 (1985), 427–430.

    Google Scholar 

  2. Atrek, E. R., Gallagher, R.H., Ragsdell, K.M. and Zienkiewicz, O.C., (eds.), New Directions in Optimum Structural design, John Wiley and Sons, New York, 1984.

    Google Scholar 

  3. Barthelemy, B., Haftka, R.T., ‘Accuracy analysis of the semi-analytical method for shape sensitivity analysis’, AIAA Paper 88-2284, Proc. AIAA/ASME/ASCE/ASC 29th Structures, Structural Dynamics and Materials Conference, Part 1, 1988, pp. 562–581, Also Mechanics of Structures and Machines, 18 (1990), 407–432.

  4. Bendsøe, M.P., Optimization of Structural Topology, Shape, and Material. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  5. Bendsøe, M.P., Díaz, A.R., Lipton, R. and Taylor, J.E. ‘Optimal design of material properties and material distribution for multiple loading conditions, To appear in Int. J. Num. Meth. Engng.

  6. Bendsøe, M.P. and Mota Soares, C.A., (eds.), Topology Design of Structures, Kluwer, Dordrecht, The Netherlands, 1993.

    Google Scholar 

  7. Bendsøe, M.P., ‘Optimal shape as a material distribution problem’, Structural Optimization, 1 (1989), 193–202.

    Google Scholar 

  8. Bendsøe, M.P. and Kikuchi, N., ‘General optimal topologies in structural design using a homogenization method’, Comp. Meth. in Appl. Mech. and Engrg., 71 (1988), 197–224.

    Google Scholar 

  9. Bendsøe, M.P., Olhoff, N. and Taylor, J.E., ‘A variational formulation for multicriteria structural optimization’, J. Struct. Mech., 11 (1983), 523–544.

    Google Scholar 

  10. Bennett, J.A. and Botkin, M.E., The Optimum Shape. Automated Structural Design. Plenum Press, New York, 1986.

    Google Scholar 

  11. Braibant, V. and Fleury, C., ‘Shape optimal design using B-splines’, Computer Methods in Applied Mechanics and Engineering, 44 (1984), 247–267.

    Google Scholar 

  12. Cheng, G. and Liu, Y., ‘A new computational scheme for sensitivity analysis’, Engineering Optimization, 12 (1987), 219–235.

    Google Scholar 

  13. Cinquini, C. and Rovati, M., ‘Problems and methods of structural optimization’, In: Rovati, M. and Contro, R. (eds), Lecture notes for COMETT Course ‘Computer Aided Optimal Design of Structures — Advanced Materials and Shape Optimization’, September 1991, University of Trento, Italy.

  14. Ding, Y, ‘Shape optimization of structures: a literature survey’, Computers and Structures, 24(6) (1986), 985–1004.

    Google Scholar 

  15. Eschenauer, H.A. and Olhoff, N., (eds.), Optimization Methods in Structural Design, B.I.-Wissenschaftsverlag, Mannheim, 1983.

    Google Scholar 

  16. Eschenauer, H.A., Mattheck, C. and Olhoff, N., (eds.), Engineering Optimization in Design Processes. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  17. Esping, B.J.D., Minimum Weight Design of Membrane Structures, Ph.D. Thesis, Dept. Aeronautical Structures and Materials, The Royal Institute of Technology, Stockholm, Report 83-1, 1983.

  18. Esping, B.J.D., ‘Minimum weight design of membrane structures using eight node isoparametric elements and numerical derivatives’, Computers and Structures, 19(4) (1984), 591–604.

    Google Scholar 

  19. Fleury, C., ‘CONLIN: an efficient dual optimizer based on convex approximation concepts’, Structural Optimization, 1 (1989), 81–89.

    Google Scholar 

  20. Fleury, C. and Braibant, V., ‘Structural optimization: a new dual method using mixed variables’, International Journal for Numerical Methods in Engineering, 23 (1986), 409–428.

    Google Scholar 

  21. Gilmore, B.J., Hoeltzel, D.A., Azram, S. and Eschenauer, H.A., ‘Advances in design automation’, Proc. 1993 ASSME Design Technical Conferences — 19th Design Automation Conference, Albuquerque, New Mexico, The American Society of Mechanical Engineers, New York, 1993.

    Google Scholar 

  22. Haftka, R.T. and Grandhi, R.U., ‘Structural shape optimization — a survey, Computer Methods in Applied Mechanics and Engineering, 57 (1986), 91–106.

    Google Scholar 

  23. Haug, E.J., (ed.), Concurrent Engineering: Tools and Technologies for Mechanical System Design, Springer-Verlag, Berlin, 1993, pp. 998.

    Google Scholar 

  24. Haug, E.J. and Cea, J., (eds.), Optimization of Distributed Parameter Structures, Sijthoff and Nordhoff. The Netherlands, 1981, vol. 1, pp. 1–842, vol 2, pp. 843–1609.

    Google Scholar 

  25. Haug, E.J., ‘A review of distributed parameter structural optimization literature’, In: Hang, E.J. and Cea, J. (eds), Optimization of Distributed Parameter Structures, vol. 1, Sijthoff and Nordhoff. The Netherlands, 1981, pp. 3–74.

    Google Scholar 

  26. Herskovits, J., (ed.), Proc. Structural Optimization '93-The World Congress on Optimal Design of Structural Systems 1–2. Federal University of Rio de Janeiro, Brazil, 1993.

    Google Scholar 

  27. Lakes, R., ‘Design considerations for materials with negative Poisson's ratio’, J. Mech Design, 115 (1993), 696–700.

    Google Scholar 

  28. Larsen, U.D., Sigmund, O. and Bouwstra, S., Fabrication of Compliant Micromechanisms and Materials with Negative Poisson's Ratio. Manuscript, 1995.

  29. Lund, E., Finite Element Based Design Sensitivity Analysis and Optimization, Ph.D. Thesis, Special Report No. 23, Institute of Mechanical Engineering, Aalborg University, Denmark, 1994, p. 240.

  30. Lund, E. and Olhoff, N., ‘Shape design sensitivity analysis of eigenvalues using ‘exact’ numerical differentiation of finite element matrices’, Structural Optimization, 8 (1994), 52–59.

    Google Scholar 

  31. Milton, G.V., ‘Composite materials with Poisson's ratio close to -1’, J. Mech. Phys Solids, 40(5) (1992), 1105–1137.

    Google Scholar 

  32. Milton, G.V. and Cherkaev, A.V., ‘Materials with elastic tensors that range over the entire set compatible with thermodynamics’, Presented at the joint ASCE-ASME-SES MettN, June 1993, University of Virginia, Charlottesville, Virginia, USA.

  33. Morris, A.J., (ed.), Foundations of Structural Optimization: A Unified Approach, Chichester, England, 1982.

  34. Mota Soares, C.A., (ed.), Computer Aided Optimal Design: Structural and Mechanical Systems. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  35. Olhoff, N., ‘Multicriterion structural optimization via bound formulation and mathematical programming’, Structural Optimization, 1 (1989), 11–17.

    Google Scholar 

  36. Olhoff, N., Bendsøe, M.P. and Rasmussen, J., ‘On CAD-integrated structural topology and design optimization’, Computer Methods in Applied Mechanics and Engineering, 89 (1991), 259–279.

    Google Scholar 

  37. Olhoff, N. and Lund, E., ‘Finite element based engineering design sensitivity analysis and optimization’, In: Herskovits, J. (ed.) Advances in Structural Optimization, Kluwer, The Netherlands, 1995, pp. 1–45.

    Google Scholar 

  38. Olhoff, N., Lund, E. and Rasmussen, J., ‘Concurrent engineering design optimization in a CAD environment’, In: E.J. Hang (ed), Concurrent Engineering: Tools and Technologies for Mechanical System Design, Springer-Verlag, Berlin, 1993, pp. 523–586.

    Google Scholar 

  39. Olhoff, N., Rasmussen, J. and Lund, E., ‘A method of ‘Exact’ numerical differentiation for error elimination in finite element based semi-analytical shape sensitivity analysis’, Mechanics of Structures and Machines, 21 (1993), 1–66.

    Google Scholar 

  40. Olhoff, N. and Rozvany, G.I.N., Structural and Multidisciplinary Optimization, Pergamon, Oxford, 1995.

    Google Scholar 

  41. Olhoff, N. and Taylor, J.E., ‘On structural optimization’, Journal of Applied Mechanics, 50 (1983), 1139–1151.

    Google Scholar 

  42. Papalambros, P.Y. and Chirehdast, M., ‘An integrated environment for structural configuration design’, J. Engrg. Design. 1 (1990), 73–76.

    Google Scholar 

  43. Pedersen, P., ‘On the minimum mass layout of trusses’, Proc. AGARD Symposium 1970, Istanbul, AGARDCP-36-7,, 1970.

  44. Pedersen, P., ‘On the optimal layout of multi-purpose trusses’, Computers and Structures. 2 (1972), 695–712.

    Google Scholar 

  45. Pedersen, P., ‘Optimal joint positions for space trusses’, J. Struct. Div., ASCE99 (1973), 2459–2476.

    Google Scholar 

  46. Pedersen, P., (ed.), Optimal Design with Advanced Materials. Elsevier, The Netherlands, 1993.

    Google Scholar 

  47. Pedersen, P., ‘Concurrent engineering design with and of advanced materials’, In: E.J. Hang (ed.), Concurrent Engineering: Tools and Technologies for Mechanical System Design, Springer-Verlag, Berlin, 1993, pp. 627–670.

    Google Scholar 

  48. Pedersen, P., ‘Bounds on elastic energy in solids of orthotropic materials’, Structural Optimization, 2 (1990), 55–63.

    Google Scholar 

  49. Pedersen, P., ‘On optimal orientation of orthotropic materials’, Structural Optimization, 1 (1989), 101–106.

    Google Scholar 

  50. Pedersen, P., Cheng, G. and Rasmussen, J., ‘On accuracy problems for semi-analytical sensitivity analysis’, Mechanics of Structures and Machines, 17(3) (1989), 373–384.

    Google Scholar 

  51. Pedersen, P., ‘Design with several eigenvalue constraints by finite elements and linear programming’, Journal of Structural Mechanics, 10(3) (1981), 243–271.

    Google Scholar 

  52. Rasmussen, J., Development of the Interactive Structural Shape Optimization System CAOS (in Danish), Ph.D. thesis, Institute of Mechanical Engineering, Aalborg University, Denmark, Special Report No. 1a, 1989.

  53. Rasmussen, J., ‘The structural optimization system CAOS’, Structural Optimization 2 (1990), 109–115.

    Google Scholar 

  54. Rasmussen, J., Lund, E., Birker, T. and Olhoff, N., ‘The CAOS system’, International Series of Numerical Mathematics, 110 (1993), 75–96, Birkhäuser Verlag, Basel.

    Google Scholar 

  55. Rasmussen, J., Lund, E. and Olhoff, N., ‘Integration of parametric modeling and structural analysis for optimum design’, Gilmore et al. (eds), Proc. Advances in Design Automation, The American Society of Mechanical Engineers, Albuquerque, New Mexico, USA, 1993.

  56. Rasmussen, J., Olhoff, N. and Lund, E., ‘Foundations for optimum design system development’, In: Lecture Notes for: Advanced TEMPUS Course on Numerical Methods in Computer Optimal Design, 11–15 mai 1992, Zakopane, Poland, 1992.

  57. Rozvany, G.I.N. and Karihaloo, B.L., (eds.), Structural Optimization, Kluwer, Dordrecht, The Netherlands, 1988.

    Google Scholar 

  58. Rozvany, G.I.N., (ed.), Optimization of Large Structural Systems, Kluwer, Dordrecht, The Netherlands, 1993, vol. 1, pp. 1–622, vol. 2, pp. 623–1198.

    Google Scholar 

  59. Rozvany, G.I.N., Bendsøe, M.P. and Kirch, U., ‘Layout optimization of structures’, Applied Mechanics Reviews. 48 (1995), 41–119.

    Google Scholar 

  60. Sacchi Landriani, G. and Rovati, M., ‘Optimal design for two-dimensional structures made of composite materials’, J. Engineering Materials and Technology, 113 (1991), 88–92.

    Google Scholar 

  61. Schmit, L.A., ‘Structural synthesis—its genesis and development’, AIAA Journal, 20 (1982), 992–1000.

    Google Scholar 

  62. Sergeyev, O. and Pedersen, P., On design of joint positions for minimum mass 3D frames, Manuscript, 1995 p. 21.

  63. Sigmund, O., ‘Design of Material Structures Using Topology Optimization’, DCAMM Special Report No. 69, Ph.D. Thesis, Technical University of Denmark, 95 p. +22 p. (appendix), December 1994.

  64. Sigmund, O., ‘Materials with prescribed constitutive parameters: an inverse homogenization problem’, Int. J. Solids Structures, 31(17) (1994), 2313–2329.

    Google Scholar 

  65. Sigmund, O., ‘Tailoring materials with prescribed elastic properties’, Mech. Materials, 20 (1995), 351–368.

    Google Scholar 

  66. Sigmund, O., ‘Design of material structures using topology optimization’, In: Olhoff, N. and Rozvany, G. (eds.) Structural and Multidisciplinary Optimization, Pergamon, Oxford, 1995.

    Google Scholar 

  67. Svanberg, K., ‘The method of moving asymptotes — a new method for structural optimization’, International Journal for Numerical Methods in Engineering, 24 (1987), 359–373.

    Google Scholar 

  68. Thomsen, J. and Olhoff, N., ‘Optimization of fiber orientation and concentration in composites’, Control and Cybernetics, 19 (1990), 327–341.

    Google Scholar 

  69. Zienkiewicz, O.C. and Campbell, J.S., ‘Shape optimization and sequential linear programming’, In: Gallagher, R.H. and Zienkiewicz (eds.), Optimum Structural Design, Theory and Applications, Wiley and Sons, London, 1973, pp. 109–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olhoff, N. On optimum design of structures and materials. Meccanica 31, 143–161 (1996). https://doi.org/10.1007/BF00426257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00426257

Key words

Navigation