Skip to main content
Log in

Pulsed-laser sputtering of atoms and molecules. Part I: Basic solutions for gas-dynamic effects

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

When gases are released from a pulsed nozzle or when solids are sputtered with intense laser pulses, effusion-like expansions take place which terminate abruptly. The resulting gas-dynamic processes depend on γ, the heat capacity ratio, as well as on whether particles backscattered to the effusing surface are subject to recondensation or reflection. Certain aspects of these terminating expansions have already been treated but we consider it appropriate to examine the problem further. In particular the following topics are emphasized. (a) Following previous work, the expansions are shown to consist of a series of regions separated by lines of contact, i.e. abrupt changes of slope. (b) For conditions of recondensation, there are two regions separated by one line of contact, the first region lying in part behind the effusing surface. For conditions of reflection, there are three regions, the first of which begins at the surface. Both types of expansion terminate with a region which is a remanent of the release process. (c) The nearsurface region under conditions of reflection permits an analytical approximation valid for all γ in which the sound speed is invariant with distance and the flow velocity is linear with distance. (d) The surface itself under conditions of recondensation permits an analytical approximation valid for all γ for the sound speed. More generally the near-surface region can be resolved by the method of Stanyukovich. (e) The various analytical solutions and approximations are shown to compare favorably with numerical results. (f) Plots of density and flow velocity versus distance are found to be roughly independent of γ, thence of the nature of the sputtered particles. (g) Tabulated results are presented to enable a more general use of gas-dynamic ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Miotello, R. Kelly: Submitted to Appl. Phys.

  2. D. Sibold, H.M. Urbassek: Phys. Fluids A 4, 165 (1992)

    Google Scholar 

  3. K.P. Stanyukovich: Unsteady Motion of Continuous Media (Pergamon, London 1960) pp. 121, 147, 151

    Google Scholar 

  4. R. Kelly, A. Miotello, B. Braren, A. Gupta, K.G. Casey: Nucl. Instrum. Methods B 65, 187 (1992)

    Google Scholar 

  5. R. Kelly: J. Chem. Phys. 92, 5047 (1990)

    Google Scholar 

  6. R. Kelly, B. Braren: Appl. Phys. B 53, 160 (1991)

    Google Scholar 

  7. T. Ytrehus: In Rarefied Gas Dynamics, ed. by J.L. Potter, Vol. II (AIAA, New York 1977) p. 1197

    Google Scholar 

  8. C. Cercignani: In Rarefied Gas Dynamics, ed. by S.S. Fisher, Vol. I (AIAA, New York 1981) p. 305

    Google Scholar 

  9. R. Kelly, R.W. Dreyfus: Surf. Sci. 198, 263 (1988)

    Google Scholar 

  10. R. Kelly, R.W. Dreyfus: Nucl. Instrum. Methods B 32, 341 (1988)

    Google Scholar 

  11. I. NoorBatcha, R.R. Lucchese, Y. Zeiri: J. Chem. Phys. 86, 5816 (1987)

    Google Scholar 

  12. D.W. Snoke, W.W. Rühle, Y-C. Lu, E. Bauser: Phys. Rev. B 45, 10979 (1992)

    Google Scholar 

  13. H.M. Urbassek, J. Michl: Nucl. Instrum. Methods B 22, 480 (1987)

    Google Scholar 

  14. R. Kelly: Nucl. Instrum. Methods B 46, 441 (1990)

    Google Scholar 

  15. B. Braren, K.G. Casey, R. Kelly: Nucl. Instrum. Methods B 58, 463 (1991)

    Google Scholar 

  16. R. Kelly: Phys. Rev. A 46, 860 (1992)

    Google Scholar 

  17. L. Wiedeman, H. Helvajian: J. Appl. Phys. 70, 4513 (1991)

    Google Scholar 

  18. D.L. Singleton, G. Paraskevopoulos, R.S. Irwin: J. Appl. Phys. 66, 3324 (1989)

    Google Scholar 

  19. D.L. Singleton: National Research Council of Canada, Ottawa (personal communication, 1992)

  20. A. Miotello, R. Kelly, B. Braren, C. Otis: Appl. Phys. Lett. 61, 2784 (1992)

    Google Scholar 

  21. K.L. Saenger: J. Chem. Phys. 75, 2467 (1981)

    Google Scholar 

  22. D. Sibold, H.M. Urbassek: Phys. Rev. A 43, 6722 (1991)

    Google Scholar 

  23. R.E. Grundy: Phys. Fluids 12, 2011 (1969)

    Google Scholar 

  24. J.C.S. Kools, T.S. Baller, S.T. de Zwart, J. Dieleman: J. Appl. Phys. 71, 4547 (1992)

    Google Scholar 

  25. H.M. Urbassek, D. Sibold: Phys. Rev. Lett. 70, 1886 (1993)

    Google Scholar 

  26. A. Vertes, P. Juhasz, M. de Wolf, R. Gijbels: Int. J. Mass Spectrom. Ion Processes 94, 63 (1989)

    Google Scholar 

  27. A. Vertes, P. Juhasz, L. Balazs, R. Gijbels: In Microbeam Analysis — 1989, ed. by P.E. Russell (San Francisco Press, San Francisco 1989) p. 273

    Google Scholar 

  28. T. Ytrehus, J. Alvestad: In Rarefied Gas Dynamics, ed. by S.S. Fisher, Vol. I (AIAA, New York 1981) p. 330

    Google Scholar 

  29. R. Mager, G. Adomeit, G. Wortberg: In Rarefied Gas Dynamics: Physical Phenomena, ed. by E.P. Muntz, D.P. Weaver, D.H. Campbell (AIAA, Washington, DC 1988) p. 460

    Google Scholar 

  30. A. Dervieux, G. Vijayasundaram: In Numerical Methods for the Euler Equations of Fluid Dynamics, ed. by F. Angrand et al. (SIAM, Philadelphia 1985) pp. 121–144

    Google Scholar 

  31. R.D. Richtmyer, K.W. Morton: In Difference Methods for Initial-Value Problems, 2nd edn. (Interscience, New York 1967) pp. 330–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For Part II, which deals with recondensation, see [1]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, R., Miotello, A. Pulsed-laser sputtering of atoms and molecules. Part I: Basic solutions for gas-dynamic effects. Appl. Phys. B 57, 145–158 (1993). https://doi.org/10.1007/BF00425999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425999

PACS

Navigation