Skip to main content
Log in

Physiological and genetic analysis of the glucose-fructose permeation system in two Synechocystis species

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fructose is toxic for Synechocystis PCC 6714 and 6803, strains which grow chemoheterotrophically on glucose. This toxicity, as well as fructose uptake, were inhibited by glucose or by its non-metabolized analogue 3-O-methyl-glucose. The results suggested that both sugars were transported by the same permeation system, the affinity for fructose, estimated from the corresponding K m and K i, being very low. The unicity of the permeation system was further established by the isolation of spontaneous mutants showing the expected pleiotropic phenotype, Glu, Frur, transport, and by the simultaneous re-acquisition of the relevant wild type characteristics in mutant cells transformed by wild type DNA. The genetic nature of this mutation is discussed in view of the impossibility to isolate spontaneously reversed wild type clones from the transport deficient mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OMG:

3-O-methyl-glucose

DCMU:

3-(3,4 dichlorophenyl)-1,1-dimethylurea

References

  • Alam J, Curtis SE (1985) Characterization of a family of putative insertion elements from the cyanobacterium Anabaena. First Intern Congress of Plant Molecular Biology. Savannah, USA, pp 49

  • Abstier C (1976) Contribution à l'étude génétique d'une algue bleue Aphanocapsa 6714. Ph. D. Thesis. University Paris XI, France

    Google Scholar 

  • Astier C, Joset-Espardellier F, Meyer I (1979) Conditions for mutagenesis in the cyanobacterium Aphanocapsa 6714. Arch Microbiol 120:93–96

    Google Scholar 

  • Beauclerck AD, Smith AJ (1978) Transport of d-glucose and 3-O-methylglucose in the cyanobacteria Aphanocapsa 6714 and Nostoc Mac. Eur J Biochem 82:187–197

    Google Scholar 

  • Buchou T (1979) Toxicité et transport du d-fructose chez une algue bleue, Aphanocapsa 6714. M. Sc. University Paris XI, France

    Google Scholar 

  • Damerval T, Franche C, Rippka R, Cohen-Bazire G (1985) O2 dependence of nif gene rearrangement in a Het mutant of Nostoc. In: Proceedings of the Vth Intern. Symp. on Photosynthetic Prokaryotes. Grindelwald, Switzerland, p 123

  • Der Vartanian M, Joset-Espardellier F, Astier C (1981) Contributions of respiratory and photosynthetic pathways during growth of a facultative photoautotrophic cyanobacterium, Aphanocapsa 6714. Plant Physiol 168:974–978

    Google Scholar 

  • Ferenci T, Kornberg HL (1973) The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose-1-phosphate kinase activity. J Biochem 132:341–347

    Google Scholar 

  • Flores E, Schmetterer G (1986) Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 166:693–696

    Google Scholar 

  • Golden JW, Robinson SJ, Haselkorn R (1985) Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabeana. Nature 314:419–423

    Google Scholar 

  • Huber SC (1986) Fructose-di-phosphate as a regulatory metabolite in plants. Ann Rev Plant Physiol 37:233–376

    Google Scholar 

  • Joset-Espardellier F, Astier C, Evans EH, Carr NG (1978) Cyanobacteria grown under photoautotrophic, photoheterotrophic, and heterotrophic regimes: sugar metabolism and carbon dioxide fixation. FEMS Microbiol Letters 4:261–264

    Google Scholar 

  • Karni L, Tel-Or E (1985) N2 fixation enhancement in vivo by Krebs cycle intermediates and by sugars in the cyanobacterium Nostoc muscorum. In: Proceedings of the Vth Intern. Symp. on Photosynthetic Prokaryotes. Grindelwald, Switzerland, p 60

  • Mazel D, Houmard J, Castets A-M, Tandeau DE, Marsac N (1986) Séquences d'ADN mobiles altérant l'expression des gènes des phycobiliprotéines chez Calothrix 7601. In: Journée d'étude sur les potentialités biologiques des Cyanobactéries. Paris, France

  • Pelroy RA, Rippka R, Stanier RY (1972) Metabolism of glucose by unicellular blue-green algae. Arch Mikrobiol 87:303–322

    Google Scholar 

  • Raboy B, Padan E (1978) Active transport of glucose and α-methylglucoside in the cyanobacterium Plectonema boryanum. J. Biol Chem 253:3287–3291

    Google Scholar 

  • Rebière M-C (1983) Recherche de moyens d'analyse génétique pour l'étude de l'organisation des gènes correspondant aux phycobiliprotéines chez les cyanobactéries. Ph. D. Thesis, University Paris VII, France

    Google Scholar 

  • Rippka R, Deruelle J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rosen A, Arad H, Tel-Or E (1985) Fructose-dependent differentiation, N2 fixation and growth in the cyanobacterium Anabaena azollae. In: Proceedings on the Vth Intern. Symp. on Photosynthetic Prokaryotes. Grindelwald, Switzerland, p 258

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joset, F., Buchou, T., Zhang, CC. et al. Physiological and genetic analysis of the glucose-fructose permeation system in two Synechocystis species. Arch. Microbiol. 149, 417–421 (1988). https://doi.org/10.1007/BF00425581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425581

Key words

Navigation