Skip to main content
Log in

Exercise capacity, energy metabolism, and beta-adrenoceptor blockade

Comparison between a beta1-selective and a non-selective beta blocker

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

The effects of beta1 and beta1/2 blockade on exercise capacity were studied in 9 healthy normotensive subjects. Progressive maximal bicycle ergometer tests, followed by an endurance test at 80% of maximal work load, were performed during randomized, double-blind 3 day treatment periods with placebo, atenolol (beta1) and oxprenolol (beta1/2). The reduction of maximal work capacity (ca. 10%) was similar with atenolol and oxprenolol, despite a more pronounced maximal heart rate reduction with atenolol (from 175±2 to 132±3 beats · min−1) than with oxprenolol (to 138±2 beats · min−1). Exercise time during the endurance test was reduced from 36±4 min with placebo to 27±3 min with atenolol (p<0.05) and 24±3 min with oxprenolol (p<0.01) (atenolol vs. oxprenolol: p<0.05). During the endurance test, plasma glycerol and non-esterified fatty acid concentrations were reduced with both atenolol and oxprenolol. The glycerol reduction was more pronounced with oxprenolol than with atenolol, plasma NEFA concentrations being similar. Plasma glucose and lactate concentrations were reduced by oxprenolol but not with atenolol. These data show that submaximal exercise capacity at work loads representing similar relative exercise intensities is reduced during non-selective and beta1-selective beta blockade. This reduction may be related to the effects of beta1 blockade on energy metabolism, with possibly an additional effect of beta2 blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner A, Muss N, Krempler F, Fenninger H, Sandhofer F (1983) Einflu\ einer akuten beta1- und beta1/2-Rezeptorenblockade auf den Kohlenhydrat- und Fettstoffwechsel unter Belastungsbedingungen. Dtsch Med Wochenschr 108: 293–298

    PubMed  CAS  Google Scholar 

  • Arends BG, Böhm ROB, Rahn KH, Van Baak MA, Van Hooff MEJ (1986) Metabolic effects and exercise tolerance during long-term treatment with three different Β-blockers. Br J Pharmacol 89: 483P

  • Bigland-Ritchie B (1981) EMG and fatigue of human voluntary and stimulated contractions. In: Porter R, Whelan J (Eds) Human muscle fatigue: physiological mechanisms. Ciba Foundation symposium No. 82. Pitman Medical, London, pp 130–156

    Google Scholar 

  • Chasiotis D, Brandt R, Harris RC, Hultman E (1983) Effects of beta-blockade on glycogen metabolism in human subjects during exercise. Am J Physiol 245: E166-E170

    PubMed  CAS  Google Scholar 

  • Clausen T (1983) Adrenergic control of Na+-K+ homeostasis. Acta Med Scand [Suppl] 672: 111–115

    CAS  Google Scholar 

  • Edwards RHT (1981) Human muscle function and fatigue. In: Porter R, Whelan J (Eds) Human Muscle Fatigue: Physiological mechanisms. Ciba foundation symposium No. 82. Pitman Medical, London, pp 1–18

    Google Scholar 

  • Fellenius E (1983) Muscle fatigue and beta-blockers — A review. Int J Sport Med 4: 1–8

    CAS  Google Scholar 

  • Franz I-W, Lohmann FW (1979) Der Einflu\ einer sog. Kardioselektiven und nichtkardioselektiven beta-Rezeptoren-Blockade auf den Blutdruck, die O2-Aufnahme und den Kohlenhydratstoffwechsel. Z Kardiol 68: 503–509

    PubMed  CAS  Google Scholar 

  • Frisk-Holmberg M, Jorfeldt L, Juhlin-Dannfelt A (1977) Influence of alprenolol on hemodynamic and metabolic responses to prolonged exercise in subjects with hypertension. Clin Pharmacol Ther 21: 675–684

    PubMed  CAS  Google Scholar 

  • Frisk-Holmberg M, Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1979) Metabolic changes in muscle on long-term alprenolol therapy. Clin Pharmacol Ther 26: 566–571

    PubMed  CAS  Google Scholar 

  • Frisk-Holmberg M, Jorfeldt L, Juhlin-Dannfelt A (1981) Metabolic effects in muscle during antihypertensive therapy with beta1- and beta1/beta2-adrenoceptor blockers. Clin Pharmacol Ther 30: 611–618

    Article  PubMed  CAS  Google Scholar 

  • Frisk-Holmberg M, Juhlin-Dannfelt A, Aström H (1985) Haemodynamic and metabolic responses to prolonged exercise after chronic beta1-adrenoceptor blockade in hypertensive man. Clin Physiol 5: 231–242

    PubMed  CAS  Google Scholar 

  • Galbo H, Holst JJ, Christensen NJ, Hilsted J (1976) Glucagon and plasma catecholamines during beta-receptor blockade in exercising man. J Appl Physiol 40: 855–863

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Hermansen L (1973) Biochemical adaptations to exercise: anaerobic metabolism. In: Wilmore JH (ed) Exercise and sport science reviews, vol I. Academic Press, New York, pp 1–43

    Google Scholar 

  • Hespel P, Lijnen P, Vanhees L, Fagard F, Fiocchi F, Moerman E, Amery A (1986) Differentiation of exercise-induced metabolic responses during selective beta1- and beta2-antagonism. Med Sci Sports Exerc 18: 186–191

    PubMed  CAS  Google Scholar 

  • Juhlin-Dannfelt A (1983) Beta-adrenoceptor blockade and exercise: effects on endurance and physical training. Acta Med Scand [Suppl] 672: 49–54

    CAS  Google Scholar 

  • Juhlin-Dannfelt AC, Terblanche SE, Fell RD, Young JC, Holloszy JO (1982) Effects of beta-adrenergic receptor blockade on glycogenolysis during exercise. J Appl Physiol 53: 549–554

    PubMed  CAS  Google Scholar 

  • Kaiser P, Tesch PA, Thorsson A, Karlsson J, Kaijser L (1985) Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man. Acta Physiol Scand 123: 285–291

    PubMed  CAS  Google Scholar 

  • Kaiser P, Tesch PA, Frisk-Holmberg M, Juhlin-Dannfelt A, Kaijser L (1986) Effect of beta1-selective and non-selective beta-blockade on work capacity and muscle metabolism. Clin Physiol 6: 197–207

    PubMed  CAS  Google Scholar 

  • Kindermann W, Scheerer S, Salas-Fraire O, Biro G, Wölfing A (1984) Verhalten der körperlichen LeistungsfÄhigkeit und des Metabolismus unter Beta1- und Beta1/2-Blockade. Z Kardiol 73: 380–387

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (1975) Heterogeneity of adenylate cyclase coupled beta-adrenergic receptors. Biochem Pharmacol 24: 583–589

    Article  PubMed  CAS  Google Scholar 

  • Lehmann M, Keul J, Wybitul K, Fisher H (1982) Auswirkung einer selektiven und nicht-selektiven Adrenorezeptorblockade wÄhrend Körperarbeit auf den Energiestoffwechsel und das sympathoadrenerge System. Drug Res 32: 261–266

    CAS  Google Scholar 

  • Lohmann FW (1981) Die Beeinflussung des Stoffwechsels durch Beta-Rezeptoren-Blocker. Klin Wochenschr 59: 49–57

    Article  PubMed  CAS  Google Scholar 

  • Lundborg P (1983) The effect of adrenergic blockade on potassium concentrations in different conditions. Acta Med Scand [Suppl] 672: 121–125

    CAS  Google Scholar 

  • Lundborg P, Aström H, Bengtsson C, Fellenius E, Von Schenck H, Svensson L, Smith U (1981) Effect of beta-adrenoceptor blockade on exercise performance and metabolism. Clin Sci 61: 299–305

    PubMed  CAS  Google Scholar 

  • MacDonald IA, Bennett T, Fellow IW (1985) Catecholamines and the control of metabolism in man. Clin Sci 68: 613–619

    PubMed  CAS  Google Scholar 

  • MacFarlane BJ, Hughson RL, Green HJ, Walters DJ, Ranney DA (1983) Effects of oral propranolol and exercise protocol on indices of aerobic function in normal man. Can J Physiol Pharmacol 61: 1010–1016

    PubMed  CAS  Google Scholar 

  • McLeod AA, Brown JE, Kitchell BB, Sedor FA, Kuhn C, Shand DG, Williams RS (1984) Hemodynamic and metabolic responses to exercise after adrenoceptor blockade in humans. J Appl Physiol 56: 716–722

    PubMed  CAS  Google Scholar 

  • Richter EA (1984) Influence of the sympatho-adrenal system on some metabolic and hormonal responses to exercise in the rat. Acta Physiol Scand [Suppl] 528

    Google Scholar 

  • Richter EA, Ruderman NB, Galbo H (1982) Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiol Scand 116: 215–222

    PubMed  CAS  Google Scholar 

  • Reybrouck T, Amery A, Billiet L (1977) Hemodynamic response to graded exercise after chronic beta-adrenergic blockade. J Appl Physiol 42: 133–138

    PubMed  CAS  Google Scholar 

  • Smith U (1983) Adrenergic control of lipid metabolism. Acta Med Scand [Suppl] 672: 41–47

    CAS  Google Scholar 

  • Stanley WC, Gertz EW, Wisneski JA, Neese RA, Morris DL, Brooks GA (1986) Lactate extraction during lactate release in legs of humans during exercise. J Appl Physiol 60: 1116–1120

    PubMed  CAS  Google Scholar 

  • Van Baak MA, Jennen W, Muijtjens A, Verstappen FTJ (1985) Effects of acute and chronic metoprolol administration during submaximal and maximal exercise. Int J Sports Med 6: 347–352

    Article  PubMed  Google Scholar 

  • Van Baak MA, Verstappen FTJ, Oosterhuis B (1986) Twentyfour hour effects of oxprenolol Oros® and atenolol on heart rate, blood pressure, exercise tolerance and perceived exertion. Eur J Clin Pharmacol 30: 399–406

    Article  PubMed  Google Scholar 

  • Van Baak MA, Böhm ROB, Petri J, Rahn KH (1987) Metabolic effects of verapamil and propranolol during submaximal endurance exercise in patients with essential hypertension. Int J Sports Med 8 (in press)

  • Wilmore JH, Freund BJ, Joyner MJ, Hetrick GA, Hartzell AA, Strother RT, Ewy GA, Faris WE (1985) Acute response to submaximal and maximal exercise consequent to beta-adrenergic blockade: implications for the prescription of exercise. Am J Cardiol 55: 135D-141D

    Article  PubMed  CAS  Google Scholar 

  • Zerbe GD (1979) Randomization analysis of randomized blocks design extended to growth and response curves. Commun Stat Theor Met A8: 191–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verstappen, F.T.J., van Baak, M.A. Exercise capacity, energy metabolism, and beta-adrenoceptor blockade. Europ. J. Appl. Physiol. 56, 712–718 (1987). https://doi.org/10.1007/BF00424815

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00424815

Key words

Navigation