Skip to main content
Log in

Force-velocity relationship and maximal power on a cycle ergometer

Correlation with the height of a vertical jump

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

The force-velocity relationship on a Monark ergometer and the vertical jump height have been studied in 152 subjects practicing different athletic activities (sprint and endurance running, cycling on track and/or road, soccer, rugby, tennis and hockey) at an average or an elite level. There was an approximatly linear relationship between braking force and peak velocity for velocities between 100 and 200 rev · min−1. The highest indices of force P0, velocity V0 and maximal anaerobic power (Wmax) were observed in the power athletes. There was a significant relationship between vertical jump height and Wmax related to body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayalon A, Inbar O, Bar-or O (1974) Relationships among measurements of explosive strength and anaerobic power. In: Nelson RC, Morehouse CA (eds) International series on sport sciences, vol 1, Biomechanics IV. University Press, Baltimore, pp 572–577

    Google Scholar 

  • Bar-or O, Dotan R, Inbar O, Rothstein A, Karlsson J, Tesch P (1980) Anaerobic capacity and muscle fiber type distribution in man. Int J Sports Med 1: 82–85

    Google Scholar 

  • Crielaard JM, Pirnay F (1981) Anaerobic and aerobic power of top Athletes. Eur J Appl Phyiol 47: 295–300

    CAS  Google Scholar 

  • Crielaard JM, Pirnay F (1985) Etude longitudinale des puissances aérobie et anaérobie alactique. Médecine Sport 59: 4–6

    Google Scholar 

  • Coyle EF, Costill DL, Lemes GR (1979) Leg extension power and muscle fiber type composition. Med Sci Sport 11: 12–15

    CAS  Google Scholar 

  • Davies CTM, Young K (1984) Effects of external loading on short term power output in children and young male adults. Eur J Appl Physiol 52: 351–354

    Article  CAS  Google Scholar 

  • De König FL, Binkhorst RA, Vos JA, Van't hof MA (1985) The force-velocity relationship of arm flexion in untrained males and females and armtrained athletes. Eur J Appl Physiol 54: 89–94

    Article  Google Scholar 

  • Fenn WO, Marsh BS (1935) Muscular force at different speeds of shortening. J Physiol 85: 277–297

    PubMed  CAS  Google Scholar 

  • Freund HJ (1983) Motor unit and muscle activity in volontary motor control. Physiol Rev 63: 387–436

    PubMed  CAS  Google Scholar 

  • Glencross DJ (1966) The nature of the vertical jump test and the standing broad jump. Res Quart 37: 353–359

    CAS  Google Scholar 

  • Gray RK, Start KB, Glencross DJ (1962) A test of leg power. Res Quart 33: 44–50

    Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constant of muscle. Proc Roy Soc B 126: 136–195

    Article  Google Scholar 

  • Inbar O, Dotan R, Trousil T, Dvir Z (1983) The effect of bicycle crank-length variation upon power performance. Ergonomics 26: 1139–1146

    PubMed  CAS  Google Scholar 

  • Jones NL, McCartney N, Graham T, Spriet L, Kowalchuk JM, Heigenhauser GJF, Sutton JR (1985) Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J Appl Physiol 59: 132–136

    PubMed  CAS  Google Scholar 

  • Katch VL, Weltman A, Traeger L (1976) All out versus steady-paced cycling strategy for maximal work output of short duration. Res Quat 47: 164–168

    CAS  Google Scholar 

  • Katch VL, Weltman A, Martin R, Gray L (1977) Optimal test characteristics for maximal anaerobic work on the bicycle ergometer. Res Quat 48: 319–327

    CAS  Google Scholar 

  • Marechal R, Pirnay F, Crielaard JM, Petit JM (1979) Influence de l'age sur la puissance anaérobie. Premier colloque médical international de gymnastique Strasbourg, octobre 1978. Economica (Paris)

    Google Scholar 

  • Margaria R, Aghemo P, Rovelli E (1966) Measurement of muscluar power (anaerobic) in man. J Appl Physiol 21: 662–1664

    Google Scholar 

  • McCartney N, Heigenhauser GJF, Sargeant AJ, Jones NL (1983a) A constant-velocity ergometer for the study of dynamic muscle function. J Appl Physiol: Respirat Environ Exercise Physiol 55: 212–217

    CAS  Google Scholar 

  • McCartney N, Heigenhauser GJF, Jones NL (1983b) Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol: Respirat Environ Exercise Physiol 55: 218–224

    CAS  Google Scholar 

  • McCartney N, Obminski G, Heigenhauser GJF (1985) Torquevelocity relationship in isokinetic cycling exercise. J Appl Physiol 58: 1459–1462

    PubMed  CAS  Google Scholar 

  • Nadeau M, Cuerrier JP, Brassard A (1983) The bicycle ergometer for muscle power testing. Can J Appl Spt Sci 8: 41–46

    CAS  Google Scholar 

  • Pérès G, Vandewalle H, Monod H (1981a) Aspect particulier de la relation charge vitesse lors du pédalage sur cycloergomètre. J Physiol (Paris) 77, 10A

    Google Scholar 

  • Pérès G, Vandewalle H, Monod H (1981b) Comparaison de trois méthodes de mesure de la puissance maximale anaérobie alactique des membres inférieurs. Congr Nat Scient Med Sport, Grenoble

  • Perrine JJ, Edgerton VR (1978) Muscle force-velocity and power-velocity relationships under isokinetic loading. Med Sci Sport 10: 159–166

    CAS  Google Scholar 

  • Pertuzon E, Lestienne F (1968) Caractères électromyographiques d'un mouvement monoarticulaire exécuté à vitesse maximale. J Physiol (Paris) [Suppl] 60: 2, p 513

    Google Scholar 

  • Pertuzon E, Bouisset S (1971) Maximum velocity of movement and maximum velocity of muscle shortening. Medicine and sport, vol 6, biomechanics II. Karger, Basel, pp 170–173

    Google Scholar 

  • Pertuzon E, Bouisset S (1973) Instantaneous force-velocity relationship in human muscle. In: Medicine and sport, biomechanics III. Karger, Basel, pp 230–234

    Google Scholar 

  • Pirnay F, Crielaard JM (1979) Mesure de la puissance anaérobie alactique. Med Sport 53: 13–16

    Google Scholar 

  • Sargeant AJ, Hoinville E, Young A (1981) Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 51: 1175–1182

    PubMed  CAS  Google Scholar 

  • Sargeant AJ, Dolan P, Thorne A (1984a) Isokinetic measurement of maximal leg force and anaerobic power output in children. In: Ilmarinen J, VÄlimÄki I (eds) Children and sport. Springer, Berlin Heidelberg New York Tokyo, pp 93–98

    Google Scholar 

  • Sargeant AJ, Dolan P, Young A (1984b) Optimal velocity for maximal short-term (anaerobic) power output in cycling. Int J Sports Med [Suppl] 5: 124–125

    Article  Google Scholar 

  • Sargent DA (1921) The physical test of a man. Am Physic Educ Rev 26: 188–194

    Google Scholar 

  • Saltin B, Henriksson J, Nygaard E, Andersen P (1977) Fiber types and metabolic potentials of sleketal muscles in sedentary man and endurance runners. Ann NY Acad Sci 301: 3–29

    PubMed  CAS  Google Scholar 

  • Sjogaard G (1978) Force-velocity curve for bicycle work. Biomechanics VI-A. Asmunssen E, Jorgensen K (eds) University Park Press; Baltimore, pp 93–99

    Google Scholar 

  • Tihanyi J, Apor P, Fekete G (1982) Force-velocity-power characteristics and fiber composition in human knee extensor muscles. Eur J Appl Physiol 48: 331–343

    CAS  Google Scholar 

  • Vandewalle H, Pérès G, Monod H (1983) Relation forcevitesse lors d'exercises cycliques réalisés avec les membres superieurs. Motricité humaine n‡ 2 22–25

  • Vandewalle H, Pérès G, Heller J, Monod H (1985a) All-out anaerobic capacity test on cycle ergometers. A comparative study on men and women. Eur J Appl Physiol 54: 222–229

    Article  CAS  Google Scholar 

  • Vandewalle H, Heller J, Pérès G, Monod H (1985b) Effects of crank length on force velocity and maximal power on cyclo-ergometers (young boys and women). Proceeding of the IV the european congress of sport medicine, Prague

  • Vandewalle H, Heller J, Pérès G, Monod H (1985c) Effects de la longueur des manivelles sur la puissance maximale et al relation force-vitesse sur ergocycle. J Physiol (Paris) 80: 5A, 6A

    Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Ergerton VR (1984) Muscle architecture and force velocity relationship in human muscle. J Appl Physiol Respirat Environ Exercise Physiol 57: 435–443

    CAS  Google Scholar 

  • Wilkie DR (1950) The relation between force and velocity in human muscle. J Physiol 110: 249–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandewalle, H., Peres, G., Heller, J. et al. Force-velocity relationship and maximal power on a cycle ergometer. Europ. J. Appl. Physiol. 56, 650–656 (1987). https://doi.org/10.1007/BF00424805

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00424805

Key words

Navigation