Skip to main content
Log in

Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We examine the expression of constitutive or repressible, monocistronic genes from Pseudomonas aeruginosa and Escherichia coli after their transfer to the heterologous host. To this end, chromosomal DNA from P. aeruginosa was cloned into the mobilizable broad-host-range vector pKT240; recombinant plasmids carrying the argA, argF, or proC genes were identified by complementation of the corresponding auxotrophic mutations. The isofunctional E. coli genes and the E. coli proB gene were subcloned into pKT240 from existing recombinant plasmids. The enzyme expression specified by the Pseudomonas genes in E. coli, calculated per gene copy, ranged from 0.3%–5% of the levels observed in Pseudomonas. Fusion of the P. aeruginosa proC gene to the E. coli consensus tac promoter resulted in very high proC enzyme production in E. coli, indicating that, at least in this case, the expression barrier is essentially at the level of transcriptional initiation. The E. coli argA and argF enzymes, which are controlled by repression in their native host, were synthesized constitutively in P. aeruginosa at 5% of the levels measured in E. coli under derepressed conditions. The constitutive E. coli proB and proC genes were expressed at high levels (ca. 50%) in the heterologous host. These results support the idea that P. aeruginosa may be a more permissive host than E. coli for the heterologous expression of genes from gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagdasarian MM, Amann E, Lurz R, Rückert B, Bagdasarian M (1983) Activity of the hybrid trp-lac(tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. Gene 26:273–282

    Google Scholar 

  • Buckel P, Zehelein E (1981) Expression of Pseudomonas fluorescens d-galactose dehydrogenase in E. coli. Gene 16:149–159

    Google Scholar 

  • Carlson CA, Stewart GJ, Ingraham JL (1985) Thymidine salvage in Pseudomonas stutzeri and Pseudomonas aeruginosa provided by heterologous expression of Escherichia coli thymidine kinase gene. J Bacteriol 163:291–295

    Google Scholar 

  • Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533

    Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    Google Scholar 

  • Chesney RH, Scott JR, Vapnek D (1979) Integration of the plasmid prophages P1 and P7 into the chromosome of Escherichia coli. J Mol Biol 130:161–173

    Google Scholar 

  • Clarke PH, Laverack PD (1983) Expression of the argF gene of Pseudomonas aeruginosa in Pseudomonas aeruginosa, Pseudomonas putida, and Escherichia coli. J Bacteriol 154:508–512

    Google Scholar 

  • Consevage MW, Porter RD, Phillips AT (1985) Cloning and expression in Escherichia coli of histidine utilization genes from Pseudomonas putida. J Bacteriol 162:138–146

    Google Scholar 

  • Crabeel M, Charlier D, Cunin R, Glansdorff N (1979) Cloning and endonuclease restriction analysis of argF and of the control region of the argECBH bipolar operon in Escherichia coli. Gene 5:207–231

    Google Scholar 

  • Darzins A, Nixon LL, Vanags RI, Chakrabarty AM (1985) Cloning of Escherichia coli and Pseudomonas aeruginosa phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J Bacteriol 161:249–257

    Google Scholar 

  • Deutch AH, Smith CJ, Rushlow KE, Kretschmer PJ (1982) Escherichia coli Δ1 reductase: gene sequence, protein overproduction and purification. Nucl Acids Res 10:7701–7714

    Google Scholar 

  • Deutch AH, Rushlow KE, Smith CJ (1984) Analysis of the Escherichia coli proBA locus by DNA and protein sequencing. Nucl Acids Res 12:6337–6355

    Google Scholar 

  • Dretzen G, Bellard M, Sassone-Corsi P, Chambon P (1981) A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem 112:295–298

    Google Scholar 

  • Drew R (1984) Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa. J Gen Microbiol 130:3101–3111

    Google Scholar 

  • Dykstra CC, Prasher D, Kushner SR (1984) Physical and biochemical analysis of the cloned recB and recC genes of Escherichia coli K-12. J Bacteriol 157:21–27

    Google Scholar 

  • Früh R, Watson JM, Haas D (1983) Construction of recombination-deficient strains of Pseudomonas aeruginosa. Mol Gen Genet 191:334–337

    Google Scholar 

  • Gergen JP, Stern RH, Wensink PC (1979) Filter replicas and permanent collection of recombinant DNA plasmids. Nucl Acids Res 8:2115–2136

    Google Scholar 

  • Gragerov AI, Chenchik AA, Aivasashvilli VA, Beabealashvilli RS, Nikiforov VG (1984) Escherichia coli and Pseudomonas putida RNA polymerases display identical contacts with promoters. Mol Gen Genet 195:511–515

    Google Scholar 

  • Haas D, Kurer V, Leisinger T (1972) N-Acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem 31:290–295

    Google Scholar 

  • Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22

    Google Scholar 

  • Haas D, Cryz Jr SJ, Itoh Y, Leisinger T, Lüthi E, Mercenier A, Reimmann C, Rella M, Soldati L, Watson JM, Wretlind B (1984) Some applications of transposon insertion mutagenesis in Pseudomonas. In: Heslot H (ed) Génétique des microorganismes industriels. Société Française de Microbiologie, pp 91–111

  • Hayzer DJ (1983) Sub-cloning of the wild-type proAB region of the Escherichia coli genome. J Gen Microbiol 129:3215–3225

    Google Scholar 

  • Hayzer DJ, Leisinger T (1980) The gene-enzyme relationship of proline biosynthesis in Escherichia coli. J Gen Microbiol 118:287–293

    Google Scholar 

  • Hediger MA, Johnson DF, Nierlich DP, Zabin I (1985) DNA sequence of the lactose operon: the lacA gene and the transcriptional termination region. Proc Natl Acad Sci USA 82:6414–6418

    Google Scholar 

  • Holloway BW (1984) Pseudomonads. In: Ball C (ed) Genetics and breeding of industrial microorganisms. CRC Press Inc, Boca Raton, Florida, p 63–92

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Google Scholar 

  • Inouye S, Nakazawa A, Nakazawa T (1985) Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. J Bacteriol 163:863–869

    Google Scholar 

  • Isaac JH, Holloway BW (1972) Control of arginine biosynthesis in Pseudomonas aeruginosa. J Gen Microbiol 73:427–438

    Google Scholar 

  • Itoh Y, Watson JM, Haas D, Leisinger T (1984) Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220

    Google Scholar 

  • Krishna RV, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Partial purification and characterization of γ-glutamylkinase. Biochem J 181:215–222

    Google Scholar 

  • Krishna RV, Beilstein P, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Properties of γ-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase. Biochem J 181:223–230

    Google Scholar 

  • Leisinger T, Haas D (1975) N-acetylglutamate synthase of Escherichia coli: regulation of synthesis and activity by arginine. J Biol Chem 250:1690–1693

    Google Scholar 

  • Martin C, Cami B, Borne F, Jeenes DJ, Haas D, Patte J-C (1986) Heterologous expression and regulation of the lysA genes of Pseudomonas aeruginosa and Escherichia coli. Mol Gen Genet 203:430–434

    Google Scholar 

  • Mergeay M, Boyen A, Legrain C, Glansdorff N (1978) Expression of Escherichia coli K-12 arginine genes in Pseudomonas fluorescens. J Bacteriol 136:1187–1188

    Google Scholar 

  • Mermod N, Lehrbach PR, Reineke W, Timmis KN (1984) Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J 3:2461–2466

    Google Scholar 

  • Minton NP, Clarke LE (1985) Identification of the promoter of the Pseudomonas gene coding for carboxypeptidase G2. J Mol Appl Genet 3:26–35

    Google Scholar 

  • Nagahari K, Sano Y, Sakaguchi K (1977) Derepression of E. coli trp operon on interfamilial transfer. Nature 266:745–746

    Google Scholar 

  • Rella M, Mercenier A, Haas D (1985) Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene 33:293–303

    Google Scholar 

  • Sano Y, Kageyama M (1984) Genetic determinant of pyocin AP41 as an insert in the Pseudomonas aeruginosa chromosome. J Bacteriol 158:562–570

    Google Scholar 

  • Smyth PF, Clarke PH (1975) Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol 90:81–90

    Google Scholar 

  • Stalon V, Ramos F, Piérard A, Wiame J-M (1972) Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A comparison the anabolic transferase and with a mutationally modified catabolic transferase. Eur J Biochem 29:25–35

    Google Scholar 

  • Van Vliet F, Cunin R, Jacobs A, Piette J, Gigot D, Lauwereys M, Piérard A, Glansdorff N (1984) Evolutionary divergence of genes for ornithine and aspartate carbamoyl-transferases-complete sequence and mode of regulation of the Escherichia coli argF gene; comparison of argF with argI and pyrB. Nucl Acids Res 12:6277–6289

    Google Scholar 

  • Yamamoto T, Yamagata S, Horii K, Yamagishi S (1982) Comparison of transcription of β-lactamase genes specified by various ampicillin transposons. J Bacteriol 150:269–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Tiollais

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeenes, D.J., Soldati, L., Baur, H. et al. Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host. Mol Gen Genet 203, 421–429 (1986). https://doi.org/10.1007/BF00422066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422066

Key words

Navigation