Skip to main content
Log in

Familial true hermaphroditism: paternal and maternal transmission of true hermaphroditism (46,XX) and XX maleness in the absence of Y-chromosomal sequences

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We report on 46,XX true hermaphroditism and 46,XX maleness coexisting in the same pedigree, with maternal as well as paternal transmission of the disorder. Molecular genetic analysis showed that both hermaphrodites as well as the 46,XX male were negative for Y-chromosomal sequences. Thus, this pedigree is highly informative and allows the following conclusions: first, the maternal as well as paternal transmission of the disorder allows the possibility of an autosomal dominant as well as an X-chromosomal dominant mode of inheritance; second, testicular determination in the absence of Y-specific sequences in familial 46,XX true hermaphrodites as well as in 46,XX males seems to be due to the varying expression of the same genetic defect; and third, there is incomplete penetrance of the defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaronson IA (1985) True hermaphroditism. A review of 41 cases with observations on testicular histology and function. Br J Urol 57:775–779

    Google Scholar 

  • Abbas NE, Toublanc JE, Boucekkine C, Toublanc M, Affara NA, Job J-C, Fellous M (1990) A possible common origin of ‘Y-negative’ human XX-males and XX true hermaphrodites. Hum Genet 84:356–360

    Google Scholar 

  • Affara NA (1991) Sex and the single Y. Bio Essays 13:475–478

    Google Scholar 

  • Berkovitz GD, Fechner PY, Marcantonio SM, Bland G, Stetten G, Goodfellow PN, Smith KB, Migeon CJ (1992) The role of the sex-determining region of the Y chromosome (SRY) in the etiology of 46,XX true hermaphroditism. Hum Genet 88:411–416

    Google Scholar 

  • Berta Ph, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M (1990) Genetic evidence equating SRY and the testis-determing factor. Nature 348:448–450

    Google Scholar 

  • Bowry RB, Honore LH, Johnson HW, Kliman MR, Marshall RH (1981) Familial true hermaphroditism: the intersex child. Pediatr Adolesc Endocrinol 8:105–110

    Google Scholar 

  • Braun A, Kammerer S, Cleve H, Löhrs U, Schwarz HP, Kuhnle U (1993) True hermaphroditism in a 46,XY individual caused by a postzygotic somatic point mutation in the male gonadal sex-determining locus (SRY). Molecular genetics and histological findings in a sporadic case. Am J Hum Genet 52:578–585

    Google Scholar 

  • Chapelle A de la (1987) The Y-chromosomal and autosomal testisdetermining genes. Development [Suppl] 101:33–38

    Google Scholar 

  • Damiani D, Billerbeck AEC, Goldberg ACK, Setian N, Fellous M, Kalil J (1990) Investigation of the ZFY gene in XX true hermaphroditism and Swyer syndrome. Hum Genet 85:85–88

    Google Scholar 

  • Ellis NA, Goodfellow PJ, Pym B, Smith M, Palmer M, Frischauf A-M, Goodfellow PN (1989) The pseudoautosomal boundary in man is defined by an ALU repeat sequence inserted on the Y chromosome. Nature 337:81–84

    Google Scholar 

  • Fraccaro M, Tiepolo L, Zuffardi O, Chiumello G, Di Natale B, Gargantini L, Wolf U (1979) Familial XX true hermaphroditism and the H-Y antigen. Hum Genet 48:45–52

    Google Scholar 

  • Harley VR, Jackson DI, Hextall J, Hawkins JR, Berkovitz GD, Sockanathan S, Lovell-Badge R, Goodfellow PN (1992) DNA binding activity of recombinant SRY from normal males and XY females. Science 255:453–456

    Google Scholar 

  • Jäger RJ, Anvret M, Hall K, Scherer G (1990) A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348:452–454

    Google Scholar 

  • Knorr D, Beckmann D, Bidlingmaier F, Helmig F-J, Sippell WG (1979) Plasma testosterone in male puberty. II. hCG stimulation test in boys with hypospadia. Acta Endocrinol (Copenh) 90:365–371

    Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for SRY. Nature 351:117–121

    Google Scholar 

  • Milner WA, Garlick WB, Fink AJ, Stein AA (1958) True hermaphrodite siblings. J Urol 79:1003–1007

    Google Scholar 

  • Mori Y, Mizutani S (1968) Familial hermaphroditism in genetic females. Jpn J Urol 59:857–861

    Google Scholar 

  • Niekerk WA van (1981) True hermaphroditism. In: Josso N (ed) The intersex child. Karger, Basel, pp 80–99

    Google Scholar 

  • Niekerk WA van, Retief AE (1981) The gonads of human true hermaphrodites. Hum Genet 58:117–122

    Google Scholar 

  • Ostrer H, Wright G, Clayton M, Skordis N, MacGillivray MH (1989) Familial XX chromosomal maleness does not arise from a Y chromosomal translocation. J Pediatr 114:977–982

    Google Scholar 

  • Palmer MS, Sinclair AH, Berta P, Ellis NA, Goodfellow PN, Abbas NE, Fellous M (1989) Genetic evidence that ZFY is not the testis-determining factor. Nature 342:937–939

    Google Scholar 

  • Pereira ET, Almeida JCC de, Gunha A, Patton M, Taylor R, Jeffrey S (1991) Use of probes for ZFY, SRY, and the Y pseudoautosomal boundary in XX males, XX true hermaphrodites, and an XY female. J Med Genet 28:591–595

    Google Scholar 

  • Ramsay M, Bernstein R, Zwane E, Page DC, Jenkins T (1988) XX true hermaphroditism in Southern African Blacks: An enigma of primary sexual differentiation. Am J Hum Genet 43:4–13

    Google Scholar 

  • Rosenberg HS, Clayton GW, Hsu TC (1963) Familial true hermaphrodism. J Clin Endocrinol Metab 23:203–206

    Google Scholar 

  • Schnackenburg K von, Bidlingmaier F, Knorr D (1980) 17-hydroxy-progesterone, androstendione and testosterone in normal children and in prepubertal patients with congenital adrenalhyperplasia. Eur J Pediatr 133:259–267

    Google Scholar 

  • Schneider-Gädicke A, Beer-Romero P, Brown LG, Nussbaum R, Page DC (1989) ZFX has a gene structure similar to ZFY, the putative human sex determinant, and escapes X inactivation. Cell 57:1247–1258

    Google Scholar 

  • Sinclair AH, Berta Ph, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf A-M, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244

    Google Scholar 

  • Skordis NA, Stetka DG, MacGillivray MH, Greenfield SP (1987) Familial 46,XX males coexisting with familial 46,XX true hermaphrodites in the same pedigree. J Pediatr 110:244–248

    Google Scholar 

  • Tazaki H, Ikeda N, Omori S (1964) True hermaphrodites in Japan. Report of a case and review of the literature. Keio J Med 13:143–154

    Google Scholar 

  • Vergnaud G, Page DC, Simmler MC, Brown L, Rouyer F, Noel B, Botstein D, Chapelle A de la, Weissenbach J (1986) A deletion map of the human Y chromosome based on DNA hybridizaion. Am J Hum Genet 38:109–124

    Google Scholar 

  • Waibel F, Scherer G, Fraccaro M, Hustinx TWJ, Weissenbach J, Wieland J, Mayerova A, Back E, Wolf U (1987) Absence of Y-specific DNA sequences in human 46,XX true hermaphrodites and in 45,X mixed gonadal dysgenesis. Hum Genet 76:332–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhnle, U., Schwarz, H.P., Löhrs, U. et al. Familial true hermaphroditism: paternal and maternal transmission of true hermaphroditism (46,XX) and XX maleness in the absence of Y-chromosomal sequences. Hum Genet 92, 571–576 (1993). https://doi.org/10.1007/BF00420941

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420941

Keywords

Navigation