Skip to main content
Log in

Plastocyanin is encoded by an uninterrupted nuclear gene in spinach

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Plastocyanin is a member of photosynthetic electron transport chains that transfers electrons from cytochrome f to the oxidized P700 chlorophyll a pigment of the photosystem I reaction center. We have isolated and characterized cDNA- and genomic clones from spinach (Spinacia oleracea) encoding the complete plastocyanin-precursor polypeptide. The amino acid sequence derived from the nucleotide sequence shows that the precursor consists of 168 amino acid residues including a transit sequence of 69 residues. The precursor polypeptide has a predicted Mr of 16,917, the mature protein of 10,413. The available data indicate that plastocyanin derives probably from a single-copy gene. The coding region contains no intron. The size of the mRNA as determined by S1 nuclease protection experiments is approximately 660 nucleotides, although analysis of different cDNA clones suggests that longer RNA species do exist, approaching the size of the mRNA (850 bases) estimated by Northern blot techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benton WD, Davis RW (1977) Science 196:180–182

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Cell 12:721–732

    Google Scholar 

  • Breathnach R, Chambon P (1981) Ann Rev Biochem 50:349–383

    Google Scholar 

  • Bünemann H, Westhoff P, Herrmann RG (1982) Nucleic Acids Res 10:7163–7180

    Google Scholar 

  • Dean C, Tamaki S, Dunsmuir P, Favreau M, Katayama C, Dooner H, Bedbrook J (1986) Nucleic Acids Res 14:2229–2240

    Google Scholar 

  • Frischauf A-M, Lehrach H, Poustka A, Murray N (1983) J Mol Biol 170:827–842

    Google Scholar 

  • Grossman AR, Bartlett SG, Schmidt GW, Mullet JE, Chua N-H (1982) J Biol Chem 257:1558–1563

    Google Scholar 

  • Haehnel W (1986) Encycl Plant Physiol 19:547–559

    Google Scholar 

  • Heidecker G, Messing J (1986) Ann Rev Plant Physiol 37:439–466

    Google Scholar 

  • Heijne G von (1986a) J Mol Biol 189:239–242

    Google Scholar 

  • Heijne G von (1986b) EMBO J 5:1335–1342

    Google Scholar 

  • Hernández-Lucas C, Royo J, Paz-Ares J, Ponz F, Garcia-Olmedo F, Carbonero P (1986) FEBS Lett 200:103–106

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1983) In: Cifferri O, Dure L III (eds) Structure and function of plant genomes. Plenum Press, New York, pp 143–153

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Tittgen J, Nelson N (1985) In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 233–256

    Google Scholar 

  • Hohn B, Murray K (1977) Proc Natl Acad Sci USA 74:3259–3263

    Google Scholar 

  • Karlin-Neumann GA, Tobin EM (1986) EMBO J 5:9–13

    Google Scholar 

  • Kozak M (1986) Cell 44:283–292

    Google Scholar 

  • Kröger M, Kröger-Block A (1982) Nucleic Acids Res 10:229–236

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: Laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Nucleic Acids Res 12:7035–7056

    Google Scholar 

  • Morris J, Herrmann RG (1984) Nucleic Acids Res 12:2837–2850

    Google Scholar 

  • Robinson C, Ellis RJ (1984) Eur J Biochem 142:337–342

    Google Scholar 

  • Scawen MD, Ramshaw JAM, Boulter D (1975) Biochem J 147:343–349

    Google Scholar 

  • Smeekens S, de Groot M, van Binsbergen J, Weisbeek P (1985) Nature 317:456–458

    Google Scholar 

  • Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P (1986) Cell 46:365–375

    Google Scholar 

  • Sollner-Webb B, Reeder RH (1979) Cell 18:484–499

    Google Scholar 

  • Tittgen J (1985) Dissertation, Universität Düsseldorf

  • Tittgen J, Herrmans J, Steppuhn J, Jansen T, Jansson C, Andersson B, Nechushtai R, Nelson N, Herrmann RG (1986) Mol Gen Genet 204:258–265

    Google Scholar 

  • Tyagi AK, Steppuhn J, Hermans J, Jansson Ch, Vater F, Herrmann RG (Mol Gen Genet, submitted)

  • Weaver RF, Weissmann C (1979) Nucleic Acids Res 7:1175–1193

    Google Scholar 

  • Westhoff P (1985) Mol Gen Genet 201:115–123

    Google Scholar 

  • Willmitzer L, Wagner KG (1981) Exp Cell Res 135:69–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Fritz Kaudewitz on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rother, C., Jansen, T., Tyagi, A. et al. Plastocyanin is encoded by an uninterrupted nuclear gene in spinach. Curr Genet 11, 171–176 (1986). https://doi.org/10.1007/BF00420603

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420603

Key words

Navigation