Skip to main content
Log in

Mutations in a nuclear gene of Chlamydomonas cause the loss of two chloroplast ribosomal proteins, one synthesized in the chloroplast and the other in the cytoplasm

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The allelic nuclear mutations of Chlamydomonas reinhardtii, cr-6 and cr-7, result in the loss of two proteins from the large subunit of the chloroplast ribosome. One of these proteins, L-13, is synthesized in the chloroplast and the other, L29, is made in the cytoplasm. The loss of these two proteins is correlated with the inability of the large subunits of the chloroplast ribosomes to form monomers which incorporate labeled phenylalanine at normal rates in response to a polyuridylic acid template. Using antisera raised against L13 and L29, we found that protein L-13 was synthesized in appreciable amounts in pulse labeled cells of cr-6 and cr-7, but protein L-29 was not. We conclude that the inability to synthesize protein L29 is a primary defect in both cr-6 and cr-7 and that this protein is required for the stable assembly of protein L-13 into chloroplast ribosomes. The absence of one or both of these proteins from the large subunit of chloroplast ribosomes of the mutants interferes with the ability of the small and large subunits to associate properly into normal 70S monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett SG, Boynton JE, Gillham NW (1981) Symp Soc Gen Microbiol 31:379–412

    Google Scholar 

  • Bartlett SG, Harris EH, Grabowy CT, Gillham NW, Boynton JE (1979) Mol Gen Genet 176:199–208

    Google Scholar 

  • Bogorad L, Davidson JN, Hanson MR (1976) In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 61–67

    Google Scholar 

  • Bohnert HJ, Crouse EJ, Schmitt JM (1982) In: Parthier B, Boulter D (eds) Nucleic acids and proteins in plants II. Encyclopedia of plant physiology, vol 14B. Springer, New York, pp 475–530

    Google Scholar 

  • Bonner WM, Laskey RA (1974) Eur J Biochem 46:83–88

    Google Scholar 

  • Boynton JE, Burton WG, Gillham NW, Harris EH (1973) Proc Natl Acad Sci USA 70:3463–3467

    Google Scholar 

  • Boynton JE, Gillham NW, Burkholder B (1970) Proc Natl Acad Sci USA 67:1505–1512

    Google Scholar 

  • Boynton JE, Gillham NW, Chabot JF (1972) J Cell Sci 10:267–305

    Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Tingle CL, VanWinkle-Swift K, Adams GMW (1976) In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 313–322

    Google Scholar 

  • Boynton JE, Gillham NW, Lambowitz AM (1980) In: Chambliss G, Craven G, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: Structure, function and genetics. University Park Press, Baltimore, pp. 903–950

    Google Scholar 

  • Burrell HE, Horowitz J (1975) FEBS Lett 49:306–309

    Google Scholar 

  • Chua N-H, Schmidt GW (1978) Proc Natl Acad Sci USA 75:6110–6114

    Google Scholar 

  • Conde MF, Boynton JE, Gillham NW, Harris EH, Tingle CL, Wang WL (1975) Mol Gen Genet 140:183–220

    Google Scholar 

  • Davidson JN, Hanson MR, Bogorad L (1974) Mol Gen Genet 132:119–129

    Google Scholar 

  • Eneas-Filho J, Hartley MR, Mache R (1981) Mol Gen Genet 184:484–488

    Google Scholar 

  • Eves E, Chiang K-S (1982) Genetics 100:35–60

    Google Scholar 

  • Ford C, Wang W-Y (1980) Mol Gen Genet 179:259–263

    Google Scholar 

  • Freyssinet G (1978) Exp Cell Res 115:207–219

    Google Scholar 

  • Gillham NW (1978) Organelle heredity. Raven Press, New York, p 602

    Google Scholar 

  • Gillham NW, Boynton JE, Harris EH, Fox SB, Bolen PL (1976) In: Bücher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier/ North-Holland Biomedical Press, Amsterdam, pp. 69–76

    Google Scholar 

  • Goodenough UW, Levine RP (1971) J Cell Biol 50:50–62

    Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1974) J Cell Biol 62:160–179

    Google Scholar 

  • Harris EH (1982) In: O'Brien SJ (ed) Genetic maps. National Cancer Institute, Frederick, MD, pp 168–174

    Google Scholar 

  • Hjelm H, Hjehn K, Sjöquist J (1972) FEBS Lett 28:73–76

    Google Scholar 

  • La Polla RJ, Lambowitz AM (1982) J Cell Biol 95:267–277

    Google Scholar 

  • Levine RP, Ebersold WT (1958) Z Vererbs 89:631–635

    Google Scholar 

  • Levine RP, Ebersold WT (1960) Ann Rev Microbiol 14:197–216

    Google Scholar 

  • Levine RP, Goodenough UW (1970) Ann Rev Genet 4:397–408

    Google Scholar 

  • Malnoe P, Rochaix J-D, Chua N-H, Spahr P-F (1979) J Mol Biol 133:417–434

    Google Scholar 

  • Mets L, Bogorad L (1972) Proc Natl Acad Sci USA 69:3779–3793

    Google Scholar 

  • Mets LJ, Bogorad L (1974) Analyt Biochem 57:200–210

    Google Scholar 

  • Nierhaus KH (1980) In: Chambliss G, Craven G, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: Structure, function, and genetics. University Park Press, Baltimore, pp 267–294

    Google Scholar 

  • Nomura M, Held WA (1974) In: Nomura M, Tissières A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratories, New York, pp 193–223

    Google Scholar 

  • Otha N, Sager R, Inouye M (1975) J Biol Chem 250:3655–3659

    Google Scholar 

  • Rochaix JD, Malnoe P (1978) Cell 15:661–670

    Google Scholar 

  • Roy H, Bloom M, Milos P, Monroe M (1982) J Cell Biol 94:20–27

    Google Scholar 

  • Schmidt GW, Mishkind ML (1983) Proc Natl Acad Sci USA 80:2632–2636

    Google Scholar 

  • Schmidt RJ, Richardson CB, Gillham NW, Boynton JE (1983) J Cell Biol 96:1451–1463

    Google Scholar 

  • Schmidt RJ, Myers AM, Gillham NW, Boynton JE (1984) Molecular biology and evolution (in press)

  • Shepherd HS, Boynton JE, Gillham NW (1979) Proc Natl Acad Sci USA 76:1353–1357

    Google Scholar 

  • Siersma PW, Chiang K-S (1971) J Mol Biol 58:167–185

    Google Scholar 

  • Smith SM, Ellis RJ (1979) Nature 278:662–664

    Google Scholar 

  • Spreitzer RJ, Mets L (1981) Plant Physiol 67:565–569

    Google Scholar 

  • Sueoka N (1960) Proc Natl Acad Sci USA 46:83–91

    Google Scholar 

  • Traut RR, Lambert JM, Boileau G, Kenny JW (1980) In: Chambliss G, Craven G, Davies J, Davis K, Kahan L, Nomura M (eds) Ribosomes: Structure, function and genetics. University Park Press, Baltimore, pp 89–110

    Google Scholar 

  • Yu RST, Wittmann HG (1973) Biochim Biophys Acta 324:375–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, A.M., Harris, E.H., Gillham, N.W. et al. Mutations in a nuclear gene of Chlamydomonas cause the loss of two chloroplast ribosomal proteins, one synthesized in the chloroplast and the other in the cytoplasm. Curr Genet 8, 369–378 (1984). https://doi.org/10.1007/BF00419826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419826

Key words

Navigation