Skip to main content
Log in

Biochemical and nucleic acid hybridisation studies on Brevibacterium linens and related strains

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Twenty coryneform bacteria identified as Brevibacterium linens or related strains from different private and public collections were studied biochemically in respect to the composition of the cell walls and in respect to the nucleic acid hybridisation. Investigation of the cell walls revealed an identical meso-diaminopimelic acid containing directly cross-linked peptidoglycan type which is not amidated. The characteristic polymers of the polysaccharide moiety of the cell walls were found to be teichoic acids which belong to the poly(glycerolphosphate) and the poly(ribitolphosphate) type. Furthermore a novel mannitol containing teichoic acid is present which is tentatively characterized as poly(mannitolphosphate). Arabinoglactan and ribose as distinctive sugar components together with galactose and glucose in the cell walls of B. linens could not be detected in any strain.

The biochemical findings lend support to the view that B. linens and related strains form a distinctive group which is clearly distinguished from all other coryneform bacteria. This is supported by DNA-23S/16S ribosomal ribonucleic acid reassociation studies. Deoxyribonucleic acid-deoxyribonucleic acid homology studies show the incoherency of B. linens which obviously comprises two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim P, Nevius DJ, English PD, Karrr A (1967) A method for the analysis of sugars in plant cell wall polysaccharides by gas-liquid chromatography. Carbohydrate Res 5:340–345

    Article  CAS  Google Scholar 

  • Ames BW (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    CAS  Google Scholar 

  • Archibald AR, Baddiley J (1966) The teichoic acids. Advances in Carbohydrate Chemistry 21:323–375

    CAS  Google Scholar 

  • Armstrong JJ, Baddiley J, Buchanan JG (1961) Further studies on the teichoic acid from Bacillus subtilis walls. Biochem J 80:254–261

    PubMed  CAS  Google Scholar 

  • Baddiley J, Buchanan JG, RajBhaudary UL, Sanderson AR (1962) Teichoic acid from the walls of Staphylococcus aureus H.1. Structure of the N-Acetylglucosaminylribitol residues. Biochem J 82:439–448

    PubMed  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Bousfield IJ (1972) A taxonomic study of some coryneform bacteria. J Gen Microbiol 71:441–455

    PubMed  CAS  Google Scholar 

  • Bowie IS, Grigor MR, Dunckley GG, Loutit MW, Loutit JS (1972) The DNA base composition and fatty acid constitution of some Gram positive pleomorphic soil bacteria. Soil Biol Biochem 4:397–412

    Article  CAS  Google Scholar 

  • Breed RS (1953) The Brevibacteriaceae fam. nov. of the order Eubacteriales. Riass Communicazione, VI Congr Int Microbiol, Roma 1:13–14

    Google Scholar 

  • Breed RS, Murray EGD, Smith NR (1957) Brevibacteriaceae. In: Breed RS, Murray EGD, Smith NR (eds) Bergey's Manual of Determinative Bacteriology, 7th Ed. The Williams and Wilkins Co, Baltimore, pp 490–503

    Google Scholar 

  • Burger MM, Glaser L (1966) The synthesis of teichoic acids. V. Polyglucosylglycerol phosphate and polygalactosylglycerol phosphate. J Biol Chem 241:494–506

    PubMed  CAS  Google Scholar 

  • Burton K (1968) Determination of DNA concentration with diphenylamine. Methods of Enzymol XIIB:163–166

    Article  Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE (1979) Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 110:127–136

    PubMed  CAS  Google Scholar 

  • Crombach WHJ (1974) Relationship among coryneform bacteria from soil, cheese and sea fish. Antonie von Leeuwenhoek J Microbiol Serol 40:347–359

    Article  CAS  Google Scholar 

  • Crombach WHJ (1978) Caseobacter polymorphus gen, nov., spec. nov., a coryneform bacterium from cheese. Int J Syst Bacteriol 28:354–366

    Google Scholar 

  • Cummins CS (1962) Chemical composition and antigenic structure of cell walls of Corynebacterium, Mycobacterium, Nocardia, Actinomyces and Arthrobacter. J Gen Microbiol 28 (1):35–50

    PubMed  CAS  Google Scholar 

  • Da Silva GAN, Holt J (1965) Numerical taxonomy of certain coryneform bacteria. J Bacteriol 90:921–927

    PubMed  Google Scholar 

  • Davis GHG, Newton KG (1969) Numerical taxonomy of some named coryneform bacteria. J Gen Microbiol 56:195–214

    PubMed  CAS  Google Scholar 

  • De Ley J, De Smedt J (1975) Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeuwenhoeck J Microbiol Serol 41:287–307

    Google Scholar 

  • De Ley J, Segers P, Gillis M (1978) Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 28:154–168

    Google Scholar 

  • De Smedt J, De Ley J (1977) Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 27:222–240

    Google Scholar 

  • Doi RH, Igarashi RT (1965) Conservation of ribosomal and messenger ribonucleic acids in Bacillus species. J Bacteriol 90:384–390

    PubMed  CAS  Google Scholar 

  • Fiedler F, Schleifer KH, Cziharz B, Interschick E, Kandler O (1970) Mureine types in Arthrobacter, Brevibacteria, Corynebacteria and Microbacteria. Publ Fac Sci Univ J E Purkyne Brno 47:11–22

    Google Scholar 

  • Fischer W, Koch HU, Rösel P, Fiedler F, Schmuck L (1980) Structural requirements of lipoteichoic acid carrier for recognition by the poly(ribitolphosphate) polymerase from Staphylococcus aureus H. J Biol Chem 255:4550–4556

    PubMed  CAS  Google Scholar 

  • Franklin RM (1966) Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci USA 55:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Glaser L, Burger M (1964) The synthesis of teichoic acids III. Glucosylation of polyglycerophosphate. J Biol Chem 239:3187–3191

    PubMed  CAS  Google Scholar 

  • Herbert O, Phillips PJ, Strange RE (1971) Chemical analysis of microbial cells. In: JR Norris, OW Ribbons (eds) Methods in microbiology Vol 5B. Academic Press, London, pp 209–344

    Google Scholar 

  • Johnson AR (1971) Improved method of hexosamine determination. Anal Biochem 44:628–635

    Article  PubMed  CAS  Google Scholar 

  • Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J Gen Microbiol 87:52–96

    PubMed  CAS  Google Scholar 

  • Keddie RM, Cure L (1977) The cell wall composition and distribution of free mycolic acid in some named strains of coryneform bacteria and in isolates from various natural sources. J Appl Bacteriol 42:229–252

    PubMed  CAS  Google Scholar 

  • Keddie RM, Bousfield IJ (1980) Cell wall composition in the classiifcation and identification of coryneform bacteria. In: Goodfellow M, Board RG (eds) Microbial classification and identification. Academic Press, London

    Google Scholar 

  • Keddie RM, Leask BGS, Grainger JM (1966) a comparison of coryneform bacteria from soil and herbage: cell wall composition and nutrition. J Appl Bact 29:17–43

    Google Scholar 

  • Lipkin D, Phillips BE, Abrell JW (1969) The action of hydrogen fluoride on nucleotides and other esters of phosphorus (V) acids. J Org Chem 34:1539–1547

    Article  CAS  Google Scholar 

  • Moore RL, McCarthy BJ (1967) Comparative study of ribosomal ribonucleic acid cistrons in Enterobacteria and Myxobacteria. J Bacteriol 94:1066–1074

    PubMed  CAS  Google Scholar 

  • Mulder EG, Adamse AD, Antheunisse J, Deinema MM, Woldendorp JW, Zevenhuizen LPT (1966) The relationship between brevibacterium linens and bacteria of the genus Arthrobacter. J Appl Bacteriol 29:44–71

    Google Scholar 

  • Pace B, Campbell LL (1971) Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus megaterium. J Bacteriol 107:543–547

    PubMed  CAS  Google Scholar 

  • Rhuland LE, Work E, Denman RF, Hoase DS (1955) The behaviour of the isomers of α,ɛ-diaminopimelic acid on paper chromatograms. J Amer Chem Soc 77:4844–4846

    Article  CAS  Google Scholar 

  • Robinson K (1966) Some observations on the taxonomy of the genus Microbacterium II. Cell wall analysis, gel electrophoresis and serology. J Appl Bact 29:616–624

    CAS  Google Scholar 

  • Rogosa M, Cummins LS, Lelliott RA, Keddie RM (1974) Coryneform group of bacteria, pp 599–632. In: Buchanan RE, Gibbons NE (eds) Bergey's Manual of Determinative Bacteriology 8th ed. The Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Schleifer KH, Kandler O (1969) Zur chemischen Zusammensetzung der Zellwände der Streptokokken, I. Zur Aminosäuresequenz des Mureins von Str. thermophilus and Str. faecalis. Arch Mikrobiol 57:335–365

    Article  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bact Rev 36:407–477

    PubMed  CAS  Google Scholar 

  • Seiler H, Ohmeyer G, Busse M (1977) Taxonomische Untersuchungen an Gram-positiven coryneformen Bakterien unter Verwendung eines VED-Programms zur Berechnung von Vernetzungsdiagrammen. Zentrbl Bakteriol Parasitenkd Infektionskr Hyg, Abt I Orig A 238:475–488

    CAS  Google Scholar 

  • Skyring GW, Quadling C (1970) Soil bacteria: a principal component analysis and guanine-cytosine contents of some arthrobacter-coryneform soil isolates and of some named cultures. Can J Microbiol 16:95–106

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Fiedler F (1979) DNA-DNA homology studies among strains of Arthrobacter and Brevibacterium. Arch Microbiol 120:289–295

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Kandler O (1979) Taxonomy of the genus Cellulomonas, based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology, and proposal of seven neotype strains. Int J Syst Bacteriol 29:273–282

    Google Scholar 

  • Stackebrandt E, Lewis BJ, Woese CR (1980) The phylogenetic structure of the coryneform group of bacteria. Zbl Bakt I Abt Orig C1:137–149

    Google Scholar 

  • Steigerwalt AG, Fanning GR, Fife-Ashbury MA, Brenner DJ (1975) DNA relatedness among species of Enterobacter and Serratia. Can J Microbiol 22:441–455

    Google Scholar 

  • Stuart HR, Pease PE (1972) A numerical study on the relationship of Listeria and Erysipelothrix. J Gen Microbiol 73:551–565

    PubMed  CAS  Google Scholar 

  • Trevelyan WE, Procter DD, Harrison JS (1950) Detection of sugars on paper chromatograms. Nature 166:444–445

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Sogin M, Lewis BJ, Bonen L (1976) A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: some modifications in the Sanger method for RNA sequencing. J Mol Evol 7:197–213

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Komagata K (1970) Taxonomic studies on coryneform bacteria. III. DNA base composition of coryneform bacteria. J Gen Appl Microbiol 16:215–224

    Google Scholar 

  • Yamada K, Komagata K (1972) Taxonomic studies on coryneform bacteria IV. Morphological, cultural, biochemical and physiological characteristics. J Gen Appl Microbiol 18:399–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, F., Schäffler, M.J. & Stackebrandt, E. Biochemical and nucleic acid hybridisation studies on Brevibacterium linens and related strains. Arch. Microbiol. 129, 85–93 (1981). https://doi.org/10.1007/BF00417186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417186

Key words

Navigation