Skip to main content
Log in

A non-Archimedean approach to prolongation theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Some evolution equations possess infinite-dimensional prolongation Lie algebras which can be made finite-dimensional by using a bigger (non-Archimedean) field. The advantage of this is that convergence problems hardly exist in such a field. Besides that, the accompanying Lie groups can be easily constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wahlquist, H. D. and Estabrook, F. B., ‘Prolongation Structures of Nonlinear Evolution Equations I’, J. Math. Phys. 16, 1–7 (1975).

    Google Scholar 

  2. Bourbaki, N., Groupes et algèbres de Lie, Chap. II: ‘Algèbres de Lie libres’, Hermann, Paris, 1972.

    Google Scholar 

  3. Ibid., Chap. III: ‘Groupes de Lie’.

  4. Van Eck, H.N., ‘The Explicit Form of the Lie Algebra of Wahlquist and Estabrook. A Presentation Problem’, Proc. Kon. Ned. Akad. Wetensch., Series A 86, 149–164 (1983).

    Google Scholar 

  5. Van Eck, H. N., Gragert, P. K. H., and Martini, R., ‘The Explicit Structure of the Nonlinear Schrödinger Prolongation Algebra’, Proc. Kon. Ned. Akad. Wetensch., Series A 86, 165–172 (1983).

    Google Scholar 

  6. Miura, R. M., Gardner, C. S., and Kruskal, M. D., ‘Korteweg-de Vries Equations and Generalizations, II. Existence of Conservation Laws and Constants of Motion’, J. Math. Phys. 9, 1204–1209 (1968).

    Google Scholar 

  7. Miura, R. M., ‘Korteweg-de Vries Equation and Generalizations, I. A. Remarkable Explicit Nonlinear Transformation’, J. Math. Phys. 9, 1202–1204 (1968).

    Google Scholar 

  8. Lax, P. D., ‘Nonlinear Partial Differential Equations of Evolution’, Actes, Congrès Intern. Math.: 1970, Vol. 2, pp. 831–840.

    Google Scholar 

  9. Lax, P. D., ‘Periodic Solutions of the KdV Equations’, in A. C. Newell (ed.), Nonlinear Wave Motion, AMS Proc., 1974, Lect. in Appl. Math., Vol. 15, pp. 85–96.

  10. Lax, P. D., ‘Almost Periodic Solutions of the KdV Equation’, SIAM Rev. 18, 351–375 (1976).

    Google Scholar 

  11. Bourbaki, N., Variétés différentielles et analytiques, Hermann, Paris, 1971.

    Google Scholar 

  12. Estabrook, F. B. and Wahlquist, H. D., ‘Prolongation Structures of Nonlinear Evolution Equations II’, J. Math. Phys. 17, 1293–1297 (1976).

    Google Scholar 

  13. Kumei, S., ‘Group Theoretic Aspects of Conservation Laws of Nonlinear Dispersive Waves: KdV Type Equations and Nonlinear Schrödinger Equations’, J. Math. Phys. 18, 256–264 (1977).

    Google Scholar 

  14. Kaup, D. J., ‘The Estabrook-Wahlquist Method with Examples of Application’, Physica D 1D, 391–411 (1980).

    Google Scholar 

  15. Krasilshchik, I. S. and Vinogradov, A. M.: ‘Nonlocal symmetries and the Theory of Coverings: An Addendum to A. M. Vinogradov's “Local Symmetries and Conservation Laws”’, Acta Appl. Math. 2, 79–96 (1984).

    Google Scholar 

  16. Gelfand, I. M. and Dikii, L. A., ‘Asymptotic Behaviour of the Resolvent of Sturm-Liouville Equations and the Algebra of the Korteweg-de Vries Equations’, London Mathematical Society, Lecture Note Series 60, Cambridge University Press, 1981, pp. 13–49.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Eck, H.N. A non-Archimedean approach to prolongation theory. Lett Math Phys 12, 231–239 (1986). https://doi.org/10.1007/BF00416513

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00416513

Keywords

Navigation