Skip to main content
Log in

Isolation of mutants of Alcaligenes eutrophus unable to derepress the fermentative alcohol dehydrogenase

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Eight representative strains of Alcaligenes eutrophus, two strains of Alcaligenes hydrogenophilus and three strains of Paracoccus denitrificans were examined for their ability to use different alcohols and acetoin as a carbon source for growth. A. eutrophus strains N9A, H16 and derivative strains were unable to grow on ethanol or on 2,3-butanediol. Alcohol-utilizing mutants derived from these strains, isolated in this study, can be categorized into two major groups: Type I-mutants represented by strain AS1 occurred even spontaneously and were able to grow on 2,3-butanediol (t d=2.7–6.4 h) and on ethanol (t d=15–50 h). The fermentative alcohol dehydrogenase was present on all substrates tested, indicating that this enzyme in vivo is able to oxidize 2,3-butanediol to acetoin which is a good substrate for wild type strains. Type II-mutants represented by strain AS4 utilize ethanol as a carbon source for growth (t d=3–9 h) but do not grow on butanediol. In these mutants the fermentative alcohol dehydrogenase is only present in cells cultivated under conditions of restricted oxygen supply, but a different NAD-dependent alcohol dehydrogenase is present in ethanol grown cells. Cells grown on ethanol, acetoin or 2,3-butanediol synthesized in addition two proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity and acetate thiokinase. An acylating acetaldehyde dehydrogenase (EC 1.2.1.10) was not detectable. Applying the colistin- and pin point-technique for mutant selection to strain AS1, mutants, which lack the fermentative alcohol dehydrogenase even if cultivated under conditions of restricted oxygen supply, were isolated; the growth pattern served as a readily identifiable phenotypic marker for the presence or absence of this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beisenherz G, Bolze HJ, Bücher T, Czok R, Garbade KH, Meyer-Arendt E (1953) Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskel in einem Arbeitsgang. Z Naturforsch 8b:555–577

    Google Scholar 

  • Beudeker RF, De Boer W, Kuenen JG (1981) Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions. FEMS Microbiol Lett 12:337–342

    Google Scholar 

  • Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Ann Rev Microbiol 35:405–452

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brown TDK, Jones-Mortimer MC, Kornberg HL (1977) The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336

    Google Scholar 

  • Clark D, Cronan JE (1980) Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol 141:177–181

    Google Scholar 

  • Davis DH, Stanier RY, Doudoroff M (1970) Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Arch Mikrobiol 70:1–13

    Google Scholar 

  • Don RH, Pemperton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    Google Scholar 

  • Friedrich B, Friedrich CG, Meyer M, Schlegel HG (1984) Expression of hydrogenase in Alcaligenes spp. is altered by interspecific plasmid exchange. J Bacteriol 158:331–339

    Google Scholar 

  • Friedrich B, Kortlüke C, Hogrefe C, Eberz G, Silber B, Warrelmann J (1986) Genetics of hydrogenase from aerobic lithoautotrophic bacteria. Biochimie 68:133–145

    Google Scholar 

  • Hogrefe C, Friedrich B (1984) Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 12:161–169

    Google Scholar 

  • Jendrossek D, Steinbüchel A, Schlegel HG (1987) Purification and properties of two different acetaldehyde dehydrogenases from Alcaligenes eutrophus involved in the utilization of ethanol. Eur J Biochem (in press)

  • Juni E, Heym GA (1956) A cyclic pathway for the bacterial disimilation of 2,3-butanediol, acetylmethylcarbinol and diacetyl. I. General aspects of the 2,3-butanediol cycle. J Bacteriol 71:425–432

    Google Scholar 

  • Kaudewitz F (1959) Inaktivierende und mutagene Wirkung salpetriger Säure auf Zellen von Escherichia coli. Z Naturforsch 14b:528–537

    Google Scholar 

  • King PP (1982) Biotechnology. An industrial view. J Chem Tech Biotechnol 32:2–8

    Google Scholar 

  • Kuhn M, Steinbüchel A, Schlegel HG (1984) Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions. J Bacteriol 159:633–639

    Google Scholar 

  • Lopez J, Thoms B, Fortnagel P (1973) Mutants of Bacillus subtilis blocked in acetoin reductase. Eur J Biochem 40:479–483

    Google Scholar 

  • Lopez JM, Thoms B, Rehbein H (1975) Acetoin degradation in Bacillus subtilis by direct oxidative cleavage. Eur J Biochem 57:425–430

    Google Scholar 

  • Lorowitz W, Clark D (1982) Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase. J Bacteriol 152: 935–938

    Google Scholar 

  • Loveless A, Howarth S (1959) Mutation of bacteria at high levels of survival by ethyl methane sulfonate. Nature 184:1780–1782

    Google Scholar 

  • Mandell JD, Greenberg J (1960) A new chemical mutagen for bacteria: 1-methyl-3-nitro-1-nitrosoguanidine. Biochem Biophys Res Commun 3:575–577

    Google Scholar 

  • Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, and zinc ions: evidence for curing in a Pseudomonas. Arch Int Physiol Biochim 86:440–441

    Google Scholar 

  • Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum. Arch Microbiol 128:248–252

    Google Scholar 

  • Ohi K, Takada N, Komemushi S, Okazaki M, Miura Y (1979) A new species of hydrogen-utilizing bacterium. J Gen Appl Microbiol 25:53–58

    Google Scholar 

  • Reh M, Schlegel HG (1969) Anreicherung und Isolierung auxotropher Mutanten von Hydrogenomonas H16. Arch Mikrobiol 67:99–109

    Google Scholar 

  • Schelgel HG, Vollbrecht D (1980) Formation of the dehydrogenases for lactate, ethanol and butanediol in the strict aerobic bacterium Alcaligenes eutrophus. J Gen Microbiol 117:475–481

    Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bacterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222

    Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238

    Google Scholar 

  • Stegemann H, Francksen H, Macko V (1973) Potato proteins: genetic and physiological changes, evaluated by one or two dimensional PAA-gel-techniques. Z Naturforsch 28c:722–732

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1983a) NAD-linked l(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 1. Purification and properties. Eur J Biochem 130:321–328

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1983b) NAD-linked l(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 2. Kinetic properties and inhibition by oxaloacetate. Eur J Biochem 130:329–334

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1983c) The rapid purification of lactate dehydrogenase from Alcaligenes eutrophus in a two-step procedure. Eur J Appl Microbiol Biotechnol 17:163–167

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1984) A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem 141: 555–564

    Google Scholar 

  • Steinbüchel A, Kuhn M, Niedrig M, Schlegel HG (1983) Fermentation enzymes in strictly aerobic bacteria: comparative studies on strains of the genus Alcaligenes and on Nocardia opaca and Xanthobacter autotrophicus. J Gen Microbiol 129:2825–2835

    Google Scholar 

  • Trüper HG (1965) Tricarboxylic acid cycle and related enzymes in Hydrogenomonas H16G+ grown on various carbon sources. Biochim Biophys Acta 111:565–568

    Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determination by dodecyl sulfate polyacrylamide electrophoresis. J Biol Chem 244:4406–4412

    Google Scholar 

  • Wilde E (1962) Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch Microbiol 43:109–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbüchel, A., Fründ, C., Jendrossek, D. et al. Isolation of mutants of Alcaligenes eutrophus unable to derepress the fermentative alcohol dehydrogenase. Arch. Microbiol. 148, 178–186 (1987). https://doi.org/10.1007/BF00414809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414809

Key words

Navigation