Skip to main content
Log in

Mathematical quantum theory I: Random ultrafilters as hidden variables

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The basic purpose of this essay, the first of an intended pair, is to interpret standard von Neumann quantum theory in a framework of iterated measure algebraic ‘truth’ for mathematical (and thus mathematical-physical) assertions — a framework, that is, in which the ‘truth-values’ for such assertions are elements of iterated boolean measure-algebras \(\mathbb{A}\) (cf. Sections 2.2.9, 5.2.1–5.2.6 and 5.3 below).

The essay itself employs constructions of Takeuti's boolean-valued analysis (whose origins lay in work of Scott, Solovay, Krauss and others) to provide a metamathematical interpretation of ideas sometimes considered disparate, ‘heuristic’, or simply ill-defined: the ‘collapse of the wave function’, for example; Everett's many worlds'-construal of quantum measurement; and a ‘natural’ product space of contextual (nonlocal) ‘hidden variables’.

More precisely, these constructions permit us to write down a category-theoretically natural correlation between ‘ideal outcomes’ of quantum measurements u of a ‘universal wave function’, and possible ‘worlds’ of an Everett-Wheeler-like many-worlds-theory.

The ‘universal wave function’, first, is simply a pure state of the Hilbert space (L 2([0, 1])M in a model M an appropriate mathematical-physical theory T, where T includes enough set-theory to derive all the analysis needed for von Neumann-algebraic formulations of quantum theory.

The ‘worlds’ of this framework can then be given a genuine model-theoretic construal: they are ‘random’ models M(u) determined by M-random elements u of the unit interval [0, 1], where M is again a fixed model of T.

Each choice of a fixed basis for a Hilbert space H in a model of M of T then assigns ‘ideal’ spectral values for observables A on H (random ultrafilters on the range \(\mathbb{A}\) of A regarded as a projection-valued measure) to such M-random reals u. If \(\mathbb{L}\) is the ‘universal’ Lebesgue measure-algebra on [0, 1], these assignments are interrelated by the spectral functional calculus with value 1 in the boolean extension (V(\(\mathbb{L}\)))M, and therefore in each M(u).

Finally, each such M-random u also generates a corresponding extension M(u) of M, in which ‘ideal outcomes’ of measurements of all observables A in states are determined by the assignments just mentioned from the random spectral values u for the ‘universal’ ‘position’-observable on L 2([0, 1]) in M.

At the suggestion of the essay's referee, I plan to draw on its ideas in the projected sequel to examine more recent ‘modal’ and ‘decoherence’-interpretations of quantum theory, as well as Schrödinger's traditional construal of time-evolution. A preliminary account of the latter — an obvious prerequisite for any serious ‘many-worlds’-theory, given that Everett's original intention was to integrate time-evolution and wave-function collapse — is sketched briefly in Section 5.3. The basic idea is to apply results from the theory of iterated measure-algebras to reinterpret time-ordered processes of measurements (determined, for example, by a given Hamiltonian observable H in M) as individual measurements in somewhat more complexly defined extensions M(u) of M.

In plainer English: if one takes a little care to distinguish boolean- from measure-algebraic tensor-products of the ‘universal’ measure-algebra L, one can reinterpret formal time-evolution so that it becomes ‘internal’ to the ‘universal’ random models M(u).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhiezer, N. I., and I. M. Glazman: 1981, Theory of Linear Operators in Hilbert Space, Pitman, London.

    Google Scholar 

  • Barrow, J. D. and F. J. Tipler: 1988, The Anthropic Cosmological Principle, Oxford University Press, Oxford.

    Google Scholar 

  • Belinfante, F. J.: 1971, A Survey of Hidden-Variables Theories, Pergamon, Oxford.

    Google Scholar 

  • Bell, J. L.: 1985, Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon, Oxford.

    Google Scholar 

  • Bell, J. L. and M. Machover: 1977, A Course in Mathematical Logic, North Holland, Amsterdam.

    Google Scholar 

  • Beltrametti, E. G. and G. Cassinelli: 1981, The Logic of Quantum Mechanics, Addison Wesley, Reading, MA.

    Google Scholar 

  • Benioff, P. A.: 1972, ‘Operator Valued Measures in Quantum Mechanics: Finite and Infinite Processes’, Journal of Mathematical Physics 13, 2.

    Google Scholar 

  • Benioff, P. A.: 1976a, ‘Models of Zermelo Fraenkel Set Theory as Carriers for the Mathematics of Physics. I’, Journal of Mathematical Physics 17(5), 618–28.

    Google Scholar 

  • Benioff, P. A.: 1976b, ‘Models of Zermelo Fraenkel Set Theory as Carriers for the Mathematics of Physics, II’, Journal of Mathematical Physics 17(5), 629–40.

    Google Scholar 

  • Bohr, N.: 1934, Atomic Theory and the Description of Nature, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bohr, N.: 1985, Naturbeskrivelse og Menneskelig Erkendelse, Rhodos, Copenhagen.

    Google Scholar 

  • Boos, W.: 1983, ‘Limits of Inquiry’, Erkenntnis 20, 157–94.

    Google Scholar 

  • Born, M. and H., and A. Einstein: 1969, Briefwechsel 1916–1955, Nymphenburger, München.

    Google Scholar 

  • Davies, E. B.: 1976, Quantum Theory of Open Systems, Academic, New York.

    Google Scholar 

  • Davies, P.: 1990, Other Worlds, Simon and Schuster, New York.

    Google Scholar 

  • Davis, M.: 1977, ‘A Relativity Principle in Quantum Mechanics’, International Journal of Theoretical Physics 16(11), 867–74.

    Google Scholar 

  • DeWitt, B. S. and N. Graham (eds.): 1973, The Many-Worlds Interpretation of Quantum Mechanics, Princeton University Press, Princeton.

    Google Scholar 

  • Fremlin, D. H.: 1989, ‘Measure Algebras’, in J. D. Monk and R. Bonnet (eds.), Handbook of Boolean Algebras, volume 3, Amsterdam, North Holland, pp. 877–980.

    Google Scholar 

  • Gleason, A. M.: 1975, ‘Measures on the Closed Subspaces of a Hilbert Space’, in [Hooker 1975], Hooker, C. A. (ed.): 1975, The Logico-Algebraic Approach to Quantum Mechanics, Volume I. Reidel, Dordrecht. 123–34.

    Google Scholar 

  • Gudder, S. P.: 1975, Stochastic Methods in Quantum Mechanics, North Holland, Amsterdam.

    Google Scholar 

  • Halmos, P. R.: 1950, Measure Theory, Van Nostrand, New York.

    Google Scholar 

  • Halmos, P. R.: 1963, Lectures in Boolean Algebras, Van Nostrand, Princeton.

    Google Scholar 

  • Holevo, A. S.: 1982, Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam.

    Google Scholar 

  • Hooker, C. A. (ed.): 1975, The Logico-Algebraic Approach to Quantum Mechanics, Volume I. Reidel, Dordrecht.

    Google Scholar 

  • Hume, D.: 1975, Enquiries Concerning Human Understanding and Concerning the Principles of Morals, P. H. Nidditch (ed.), Clarendon, Oxford.

    Google Scholar 

  • Hume, D.: 1978, A Treatise of Human Nature, P. H. Nidditch (ed.), Clarendon, Oxford.

    Google Scholar 

  • Jammer, M.: 1974, The Philosophy of Quantum Mechanics, Wiley, New York.

    Google Scholar 

  • Jauch, J. M.: 1968, Foundations of Quantum Mechanics, Addison Wesley, Reading, MA.

    Google Scholar 

  • Jech, T.: 1978, Set Theory, Academic, New York.

    Google Scholar 

  • Keats, John: 1959, Selected Poems and Letters, D. Bush (ed.), Houghton Mifflin, Boston.

    Google Scholar 

  • Kappos, D. A.: 1969, Probability Algebras and Stochastic Spaces, Academic, New York.

    Google Scholar 

  • Kochen, S. and E. P. Specker: 1975, ‘The Problem of Hidden Variables in Quantum Mechanics’, in [Hooker 1975], Hooker, C. A. (ed.): 1975, The Logico-Algebraic Approach to Quantum Mechanics, Volume I. Reidel, Dordrecht. 293–328.

    Google Scholar 

  • Krauss, P.: 1986, Probability Logic, Dissertation, University of California, Berkeley, (University Microfilms 67-8591).

    Google Scholar 

  • Kunen, K.: 1980, Set Theory, North Holland, Amsterdam.

    Google Scholar 

  • Mackey, G. W.: 1976, The Theory of Unitary Group Representations, Chicago, Chicago.

  • Martin, D. A., and R. M. Solovay: 1970, ‘Internal Cohen Extensions’, Annals of Mathematical Logic 2, 143–78.

    Google Scholar 

  • Moschovakis, Y. N.: 1980, Descriptive Set Theory, North Holland, Amsterdam.

    Google Scholar 

  • Pascal, Blaise: 1963, Oeuvres Complètes, Seuil, Paris.

    Google Scholar 

  • Prugovecki, E.: 1981, Quantum Mechanics in Hilbert Space, Academic, New York.

    Google Scholar 

  • Riesz, F., and Bela Sz.-Nagy: 1978, Functional Analysis, Ungar, New York.

    Google Scholar 

  • Reed, M. and B. Simon: 1980, Functional Analysis, Academic Press, New York.

    Google Scholar 

  • Royden, H. L.: 1988, Real Analysis, Macmillan, New York.

    Google Scholar 

  • Rucker, R. v. B.: 1974, ‘Undefinable Sets’, Annals of Mathematical Logic 6, 395–419.

    Google Scholar 

  • Rudin, W.: 1973, Functional Analysis, McGraw-Hill, New York.

    Google Scholar 

  • Rudin, W.: 1974, Real and Complex Analysis, McGraw-Hill New York.

    Google Scholar 

  • Segal, I. E. and R. A. Kunze: 1978, Integrals and Operators, Springer, New York.

    Google Scholar 

  • Shimony, A.: 1989, ‘Conceptual Foundations of Quantum Mechanics’, in P. Davies (ed.), The New Physics, Cambridge, Cambridge, pp. 373–95.

  • Shoenfield, F. R.: 1967, Mathematical Logic, Addison Wesley, Reading, MA.

    Google Scholar 

  • Solovay, R. M.: 1970, ‘A Model of Set Theory in which Every Set of Reals is Lebesgue Measurable’, Annals of Mathematics 92, 1–56.

    Google Scholar 

  • Solovay, R. M., and S. Tennenbaum: 1971, ‘Iterated Cohen Extensions and Souslin's Problem’, Annals of Mathematics 94, 201–245.

    Google Scholar 

  • Sudbery, A.: 1986, Quantum Mechanics and the Particles of Nature, Cambridge, Cambridge.

  • Takesaki, M.: 1979, Theory of Operator Algebras I, Springer, New York.

    Google Scholar 

  • Takeuti, G.: 1978, Two Applications of Logic to Mathematics, Princeton, Princeton, 1978.

  • Takeuti, G.: 1979, ‘Boolean Valued Analysis’, in Fourman, Mulvaney and Scott (eds.), Applications of Sheaves, Lecture Notes in Mathematics 753. Springer, New York.

    Google Scholar 

  • Takeuti, G.: 1981, ‘Quantum Set Theory’, Current Issues in Quantum Logic, Plenum, New York, pp. 303–22.

    Google Scholar 

  • Takeuti, G.: 1983, ‘Von Neumann Algebras and Boolean Valued Analysis’, Journal of the Mathematical Society of Japan 35, 1.

    Google Scholar 

  • Takeuti, G.: 1984, ‘Quantum Logic and Quantization’, Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Physical Society of Japan, pp. 256–60.

    Google Scholar 

  • Takeuti, G., and W. Zaring: 1973, Axiomatic Set Theory, Springer, New York.

    Google Scholar 

  • Varadarajan, V. S.: 1968, Geometry of Quantum Theory, I and II, Van Nostrand, Princeton, Princeton.

    Google Scholar 

  • von Neumann, J.: 1955, Mathematical Foundations of Quantum Mechanics, Princeton, Princeton.

  • Yamasaki, Y.: 1985, Measures on Infinite Dimensional Spaces, World, Singapore.

    Google Scholar 

  • Yosida, K.: 1974, Functional Analysis, Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boos, W. Mathematical quantum theory I: Random ultrafilters as hidden variables. Synthese 107, 83–143 (1996). https://doi.org/10.1007/BF00413903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413903

Keywords

Navigation