Skip to main content
Log in

Mutation affecting the charging reaction of alanyl-tRNA synthetase from Escherichia coli K 10

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

A temperature-sensitive mutant of Escherichia coli was identified as having an altered alanyl-tRNA synthetase. Specific activity of wild type and mutant cell-free extracts showed no difference in the hydroxamate assay; the charging activity, however, was more than 10 fold lower for mutant extract protein. Wild type alanyl-tRNA synthetase has been purified 344 fold, the mutant enzyme was enriched 45 fold. With these preparations the following results were obtained:

Sedimentation analysis in sucrose gradients indicates a molecular weight of the mutant enzyme of half the size of the wild type enzyme. Analytical gel filtration yields an approximate size for the native enzyme of 165000 and for the mutant enzyme material of 95,000. The mutant alanyl-tRNA synthetase differs from the wild type enzyme by a 10 fold increase in the k mfor tRNA; no true difference in the k m-values for the other substrates was detected. Temperature studies indicate an unusual low temperature-optimum for the charging reaction of both enzymes, whereas hydroxamate fromation capacity increases linearly up to almost 50°C. High temperature treatment of the native enzyme selectively affects the aminoacylation reaction but not the activation step; no effect of such treatment of the mutant enzyme was detected. It is proposed that the mutation causes the enzyme to dissociate and that the resulting subunits possess and altered tRNA binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, A.: The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595–606 (1964).

    Google Scholar 

  • Böck, A.: Studies on mutant phenylalanyl-tRNA synthetases of Escherichia coli. Europ. J. Biochem. 2, 165–170 (1967).

    Google Scholar 

  • —: Relation between subunit structure and temperature sensitivity of phenylalanyl-tRNA synthetases of Escherichia coli. Europ. J. Biochem. 4, 395–400 (1968).

    Google Scholar 

  • —, and F. C. Neidhardt: -Isolation of a mutant of Escherichia coli with a temperature-sensitive Fructose-1,6-Diphosphate Aldolase. J. Bact. 92, 464–469 (1966).

    Google Scholar 

  • Bruton, C. J., and B. S. Hartley: Subunit structure and specificity of methionyltransfer-ribonucleic acid synthetase from Escherichia coli. Biochem. J. 108, 218–288 (1968).

    Google Scholar 

  • Calendar, R., and P. Berg: Purification and physical characterization of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry 5, 1681–1695 (1966).

    Google Scholar 

  • Cassio, D., et J. P. Waller: Etudes de la méthionyl-tRNA synthétase d'Escherichia coli. 3. Dissociation en sous-unités actives par action d'un facteur extrinséque. Europ. J. Biochem. 5, 33–41 (1968).

    Google Scholar 

  • Chrambach, A., R. A. Reisfeld, M. Wyckoff, and J. Zaccari: A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Analyt. Biochem. 20, 150–154 (1967).

    Google Scholar 

  • Heinrikson, R. L., and B. S. Hartley: Purification and properties of methionyl-tRNA synthetase from Escherichia coli. Biochem. J. 105, 17–24 (1967).

    Google Scholar 

  • Lazar, M., M. Yaniv et F. Gros Sur les propriétés d'une alanyl-tRNA synthétase modifée dans une souche d'Escherichia coli à croissance thermosensible. C. R. Acad. Sci. (Paris) 266, 531–534 (1968).

    Google Scholar 

  • Lemoine, F., J. P. Waller, and R. von Rapenbusch: Studies on methionyl-tRNA synthetase. 1. Purification and some properties of methionyl-tRNA synthetase from Escherichia coli K 12. Europ. J. Biochem. 4, 213–221 (1968).

    Google Scholar 

  • Loftfield, R. B., and E. A. Eigner: The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases. Biochim. biophys. Acta (Amst.) 130, 426–448 (1966).

    Google Scholar 

  • Lowry, O. H., N. J. Rosebrough A. L. Farr, and R. J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Martin, R. G., and N. B. Ames: A method for determining the sedimentation behaviour of enzymes: Application to protein mixtures. J. biol. Chem. 236, 1372–1379 (1961).

    Google Scholar 

  • Maurer, H. R.: Disk Elektrophorese. Berlin: W. de Gruyter & Co 1968.

    Google Scholar 

  • Nass, G., and G. Stöffler: Molecular weight distribution of the aminoacyl-tRNA synthetases of Escherichia coli by gel filtration. Molec. gen. Genetics 100, 378 bis 382 (1967).

    Google Scholar 

  • Phelps, R. A., and F. W. Putnam: In: The Plasma Proteins, ed. by F. W. Putnam, vol. I. New York: Academic Press 1960.

    Google Scholar 

  • Stulberg, M. P.: The isolation and properties of phenylalanyl-ribonucleic acid synthetase from Escherichia coli B. J. biol. Chem. 242, 1060 (1967).

    Google Scholar 

  • Yaniv, M., and F. Gros: In: Genetic Elements, D. Shugar, pp. 157–179. New York: Academic Press 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böck, A. Mutation affecting the charging reaction of alanyl-tRNA synthetase from Escherichia coli K 10 . Archiv. Mikrobiol. 68, 165–178 (1969). https://doi.org/10.1007/BF00413875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413875

Keywords

Navigation